Предположим, что ширина прямоугольника = Х, тогда длина этого прямоугольника = 2Х.
У нас получаются уравнения :
1) (Х+2Х)*2=30
3Х=30:2
Х=15:3
Х=5 см - ширина прямоугольника
2*5=10 см - длина прямоугольника
5*10=50 см2 - площадь прямоугольника
2) (Х+2Х)*2=15
3Х=15:2
Х=7,5:3
Х=2,5 дм - ширина прямоугольника
2*2,5=5 дм - длина прямоугольника
2,5*5=12,5 дм2 - площадь прямоугольника
3) (Х+2Х)*2=6
3Х=6:2
Х=3:3
Х=1 см - ширина прямоугольника
2*1=2 см - длина прямоугольника
2*1=2 см2 - площадь прямоугольника
ответ : 50 см2, 12,5 дм2, 2 см2
(0;2]U[4;6)
Пошаговое объяснение:
ОДЗ:
{x > 0;
{6–x > 0 ⇒ x < 6
{(x4–12x3+36x2) > 0⇒ (x·(6–x))2 > 0 ⇒ x≠0; x≠6
ОДЗ: х∈(0;6)
при х∈(0;6):
log2(x4–12x3+36x2)=log2x2·(6–x)2=
log2(x·(6–x))2=2log2x·(6–x)=2log2x+2log2(6–x)
Неравенство принимает вид:
(2–log2x)·(log2(6–x)–2) ≥ 0
Применяем обобщенный метод интервалов
log2x=2 или log2(6–x)=2
x=4 или 6–х=4;х=2
При х=1
(2–log21)·(log2(6–1)–2)=2·(log25–log24) > 0
При х=3
(2–log23)·(log2(6–3)–2)=–(2–log23)2 < 0
При х=5
(2–log25)·(log2(6–5)–2)=(log24–log25)·(0–2) > 0
(0)__+__ [2]__–__[4]__+__ (6)
1 м сколько дициметр напишеш