Теплоход ч против течения и 1,5 часа по течению,причем путь против течения оказался больше,чем путь по течению на 57 км. Найди собственную скорость теплохода, если скорость течения реки 3км/ч Решение
Примем
х1, км/час - собственная скорость теплохода;
х2=3 км/час - скорость течения реки;
у1, км - путь теплохода по течению реки;
у2, км - путь теплохода против течения реки
тогда
у1=(х1+х2)*1,5
у2=(х1-х2)*4
у1=у2-57
(х1+х2)*1,5=(х1-х2)*4-57
(х1+3)*1,5=(х1-3)*4-57
1,5*х1+4,5=4*х1-12-57
4*х1-1,5*х1=57+12+4,5
2,5*х1=73,5
х1=73,5/2,5
х1=29,4 км/час
Проверим
у1=(29,4+3)*1,5=48,6 км
у2=(29,4-3)*4=105,6 км
у2-у1=105,6-48,6=57 км
Решение истино
ответ: собственная скорость теплохода равна 29,4 км/час
ДИСКРЕНАЯ МАТЕТАТИКА 1.1. Множества заданий множеств. 1. Проиллюстрируйте с кругов Эйлера высказывание: «Все учащиеся 5 класса присутствовали на школьной спартакиаде». Решение: Выделим множества, о которых идет речь в высказывании: это множество учащихся некоторой школы (обозначим его за А), и множество учащихся 5 класса (обозначим его В). В данном высказывании утверждается, что все элементы множества В являются также и элементами множества А. По определению отношения включения это означает, что В А. Поэтому множество В надо изобразить внутри круга, изображающего множество А. 2. Задайте множество другим если это возможно): а) А = {х| xN, х ≤ 9}; б) А = {-4, -3, -2, -1, 0, 1, 2, 3, 4}; в) А = {х| xR, х 2 – 3 = 0}. Решение: а) Элементами множества А являются натуральные числа, которые меньше 9 и само число 9, значит, А = {1, 2, 3, 4, 5, 6, 7, 8, 9}; б) А = {х| xZ, |x| ≤ 4} – множество целых чисел, модуль которых не больше четырех; в) Элементами множества А являются корни уравнения х 2 – 3 = 0, значит, А = {- 3 , 3 }. 3. Изобразите на координатной прямой перечисленные множества: а) А = {х| xR, -1,5 ≤ х ≤ 6,7}; б) М = {х| xN, 4х - 14 < 0}; в) С = {х| xZ, -5 < х <2}; г) Н = {х| xZ, |x| < 7}. Решение: ответы показаны на рисунке: а) А = [-1,5; 6,7] б) М = {1, 2, 3} в) С = (-5; 2) г) Н = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6} 4. Задайте числовое множество описанием характеристического свойства элементов: а) (0; 11); б) [-12,3; 1,1); в) [-5; 3]; г) (- ∞; -102,354]. Решение: а) А = {х| xR, 0 < х <11}; б) С = {х| xR, -12,3 ≤ х < 1,1}; в) А = {х| xR, -5 ≤ х ≤ 3}; г) Р = {х| xR, х ≤ -102,354}. 5. Даны множества: а) К = {у| у = 1, если уN, то у + 1N}, У = {у| уZ, у > 0}; б) К = Ø, У = {Ø}; в) К = {с, п, р}, У = {{с, п}, р }. Равны ли множества К и У
Теплоход ч против течения и 1,5 часа по течению,причем путь против течения оказался больше,чем путь по течению на 57 км. Найди собственную скорость теплохода, если скорость течения реки 3км/ч Решение
Примем
х1, км/час - собственная скорость теплохода;
х2=3 км/час - скорость течения реки;
у1, км - путь теплохода по течению реки;
у2, км - путь теплохода против течения реки
тогда
у1=(х1+х2)*1,5
у2=(х1-х2)*4
у1=у2-57
(х1+х2)*1,5=(х1-х2)*4-57
(х1+3)*1,5=(х1-3)*4-57
1,5*х1+4,5=4*х1-12-57
4*х1-1,5*х1=57+12+4,5
2,5*х1=73,5
х1=73,5/2,5
х1=29,4 км/час
Проверим
у1=(29,4+3)*1,5=48,6 км
у2=(29,4-3)*4=105,6 км
у2-у1=105,6-48,6=57 км
Решение истино
ответ: собственная скорость теплохода равна 29,4 км/час