Линейная функция задается формулой: у = kx + b.
а) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ пересекаются, если коэффициенты при переменной х различны, т.е k₁ ≠ k₂, поэтому графики функций у = 5х + 3 и у = -4х - 7 пересекаются, т.к. 5 ≠ -7.
б) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ параллельны, если коэффициенты при переменной х совпадают, т.е. k₁ = k₂, а b₁ ≠ b₂, поэтому графики функций у = 5х + 3 и у = 5х - 7 параллельны, т.к. 5 =5, а 3 ≠ -7.
в) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ совпадают, если коэффициенты при переменной х совпадают или пропорциональны, т.е. k₁ = k₂, а также b₁ = b₂, поэтому графики функций у = 5х + 3 и у = 10х + 6 совпадают, т.к. 10 : 5 = 6 : 3 = 2.
Чтобы убедится в этом достаточно построить графики указанных функций.
Линейная функция задается формулой: у = kx + b.
а) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ пересекаются, если коэффициенты при переменной х различны, т.е k₁ ≠ k₂, поэтому графики функций у = 5х + 3 и у = -4х - 7 пересекаются, т.к. 5 ≠ -7.
б) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ параллельны, если коэффициенты при переменной х совпадают, т.е. k₁ = k₂, а b₁ ≠ b₂, поэтому графики функций у = 5х + 3 и у = 5х - 7 параллельны, т.к. 5 =5, а 3 ≠ -7.
в) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ совпадают, если коэффициенты при переменной х совпадают или пропорциональны, т.е. k₁ = k₂, а также b₁ = b₂, поэтому графики функций у = 5х + 3 и у = 10х + 6 совпадают, т.к. 10 : 5 = 6 : 3 = 2.
Чтобы убедится в этом достаточно построить графики указанных функций.
ответ: 2⁴ *3 * 5 * 13.
Пошаговое объяснение:
Разложи число 3120 на простые множители.
3120 = 2⁴ *3 * 5 * 13.
3120 : 2 =1560;
1560 : 2 = 780;
780 : 2 = 390;
390 : 2= 195;
195 : 3 = 65;
65 : 5 = 13;
13 : 13= 1.