Дробь в математике — число, состоящее из одной или нескольких равных частей (долей) единицы[1]. По записи дроби делятся на два формата: обыкновенные вида {\displaystyle {\frac {\pm m}{n}}}{\displaystyle {\frac {\pm m}{n}}} и десятичные вида {\displaystyle 0{,}1234}{\displaystyle 0{,}1234}.
В математической записи дроби вида {\displaystyle X/Y}X/Y или {\displaystyle {\frac {X}{Y}}}{\displaystyle {\frac {X}{Y}}} число перед (над) чертой называется числителем, а число после черты (под чертой) — знаменателем. Первый выступает в роли делимого, второй — делителя.
Обыкновенные дроби с целыми числителями и ненулевыми знаменателями образуют поле рациональных чисел.
Если в треугольнике все углы составляют более 60°, то сумма углов составит более 180°. Следовательно хотя бы один угол составляет не более 60°.
1) Пусть a + b + c = (3/2)pi, a > 0, b > 0, c > 0, ((2/3)a, (2/3)b, (2/3)c) - углы треугольника. Если a=b=c = pi/2, то равенство выполняется ! Поэтому есть наименьшая величина, например c, где a+b = (3/2)*pi - c, 0 < c < pi/2, и pi < a+b < pi+pi/2.
Допустим, это не так. Значит остаток чисел от деления на 3 может быть только 1 или 2. Следующее число не может иметь такой же остаток в случае прибавления или вычитания 1 или 2, без обнуления остатка, только смена значения с 1 на 2 и наоборот. При увеличении на 2 остаток также увеличивается в 2 раза, и его значение меняется с 1 на 2 или с 2 на 1 (удвоенный остаток 2 равен 4, что аналогично остатку 1). При уменьшении в 2 раза ситуация аналогичная, обратная рассмотренным примерам с умножением. Мы рассмотрели все возможные случаи. Получается только чередование чисел с остатками ...1, 2, 1, 2... Поскольку число 2015 нечётное, то в конце встречаются два числа с одинаковыми остатками и преобразовать одно число в другое без изменения остатка разрешёнными условием задачи методами невозможно. Налицо противоречие.
Дробь в математике — число, состоящее из одной или нескольких равных частей (долей) единицы[1]. По записи дроби делятся на два формата: обыкновенные вида {\displaystyle {\frac {\pm m}{n}}}{\displaystyle {\frac {\pm m}{n}}} и десятичные вида {\displaystyle 0{,}1234}{\displaystyle 0{,}1234}.
В математической записи дроби вида {\displaystyle X/Y}X/Y или {\displaystyle {\frac {X}{Y}}}{\displaystyle {\frac {X}{Y}}} число перед (над) чертой называется числителем, а число после черты (под чертой) — знаменателем. Первый выступает в роли делимого, второй — делителя.
Обыкновенные дроби с целыми числителями и ненулевыми знаменателями образуют поле рациональных чисел.