Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}
(f(x)+g(x))
′
=f
′
(x)+g
′
(x)
(n⋅f(x))
′
=n⋅f
′
(x)
(x
n
)
′
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
′
(x)=(3x
2/3
−x)
′
=(3x
2/3
)
′
−(x)
′
=3⋅
3
2
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
3
x
2
−1
F
′
(1)=
3
1
2
−1=2−1=1
Задача: Найдите коэффициент a, если парабола y = ax² проходит через точку a(-2;12).
Подставим координаты точки в уравнение параболы и выразим из него коэффициент a:
12 = (-2)²a
12 = 4a
a = 3
ответ: a = 3.
Задача: С графика функции y = -0.5x² решите неравенство -0.5x² > -2.
(прикреплено)
y = -0.5x² — красный графикy = -2 — фиолетовый графикответ: -2 < x < 2 или x ∈ (-2; 2).
Задача: На одной координатной плоскости постройте графики функций y = x² и y = -x². Используя графики, выяснить, какая из этих функций возрастает на промежутке x ≤ 0.
(прикреплено)
y = x² — зеленый графикy = -x² — красный графикответ: На промежутке x ≤ 0 возрастает ф-ция y = -x².