Y= 2x³-3x²-12x-1
ИССЛЕДОВАНИЕ
1. Область определения - Х∈(-∞;+∞) - непрерывная.
2. Пересечение с осью Х
Y(x)=0 при x1 = -1.7555, x2 = - 0.08525, [3 = 3.34
3. Пересечение с осью У Y(0)= -1.
4. Проверка на четность.
Y(-x) = - 2x³ -3*x² + 12x - 1 ≠ Y(x) - функция ни чётная ни нечётная.
5. Первая производная
Y'(x) = 6x² - 6x - 12 - график парабола
6. Монотонность - корни производной - x1 = -1 x2 = 2
Возрастает - Х∈(-∞;-1]∪[2;+∞)
Ymax(-1) = 6
Убывает - X∈[-1;2]
Ymin(2) = - 21.
7. Вторая производная
Y"(x) = 12x - 6 - график - прямая
8. Точка перегиба
Y"(x)=0 при Х = 0,5 и Y(0.5) = -7.5
9. Выпуклая - "горка" - X∈(-∞;0.5]
Вогнутая - "ложка" - X∈[0.5;+∞)
10. График прилагается.
Пошаговое объяснение:
ВОТ НАДЕЮСЬ
Найти наибольшее значение её на отрезке [0;3].
Находим производную:
y' = 6x^2-18x +12 и приравниваем нулю:
6x^2-18x +12 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-18)^2-4*6*12=324-4*6*12=324-24*12=324-288=36;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-18))/(2*6)=(6-(-18))/(2*6)=(6+18)/(2*6)=24/(2*6)=24/12=2;x_2=(-√36-(-18))/(2*6)=(-6-(-18))/(2*6)=(-6+18)/(2*6)=12/(2*6)=12/12=1.
Имеем 2 критические точки - 3 промежутка значений производной.
Находим знаки производной на этих промежутках.
x = 0 1 1,5 2 3
y' = 12 0 -1,5 0 12.
В точке х = 1 производная переходит с + на -, это точка локального максимума.
Но, как видим, после точки х = 2 функция возрастает( знак + производной).
Поэтому находим значение функции на правой границе промежутка.
х = 3, у = 2*3³-9*3²+12*3 = 54-81+36 = 9.
ответ: максимальное значение функции на заданном промежутке равно 9.