М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
molotower
molotower
28.05.2022 08:14 •  Математика

)Номер 3 пункты 2,4)И 6 пункт 2


)Номер 3 пункты 2,4)И 6 пункт 2

👇
Ответ:

Пошаговое объяснение:

на фото


)Номер 3 пункты 2,4)И 6 пункт 2
4,6(57 оценок)
Открыть все ответы
Ответ:
Liza111333
Liza111333
28.05.2022
Дано:

Правильная четырехугольная пирамида SABCD.        

S_{\tt bok }(SABCD) = 45 (см²).

SH = h = 5 (см).

Найти:

a - сторону основания.

Решение:

Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:

\displaystyle S_{\tt bok} = 2ab, где a - сторона основания и b - апофема (высота боковой грани, проведенная из вершины).

Попробуем выразить b через a (сторону основания) и h=5 (см) (высоту пирамиды).

Рассмотрим прямоугольный \triangle SHM (где M - середина AB). В нем SH=5 (см), а MH = a/ 2 (см) (как половина стороны квадрата, равной a см).

По теореме Пифагора:

\displaystyle SH^2+MH^2=SM^2\\\\5^2 + \bigg ( \frac{ a }{2} \bigg )^2 = b^2 \\\\25 + \frac{a^2}{4} = b^2 \\\\b = \sqrt{\frac{a^2+100}{4} }

Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что a - неотрицательное):

\displaystyle S_{\tt bok} = 2ab \\\\45 = 2 \cdot a \cdot \sqrt{ \frac{a^2+100}{4} } \\\\2025 = 4 \cdot a^2 \cdot \frac{a^2+100}{4} \\\\2025 = a^2 \cdot (a^2 + 50)

Пусть a^2=t:

\displaystyle 2025 = t(t + 100)\\\\t^2 + 100t - 2025=0 \\\\t_1 = \frac{-b+\sqrt{b^2-4ac} }{2a} = \frac{ -100 + \sqrt{18100} }{2} = -50 +{5\sqrt{181} } -50 + {5\sqrt{169} } 0 \\\\t_2 = \frac{-b-\sqrt{b^2-4ac} }{2a} = \frac{ -100 - \sqrt{18100} }{2} = -50 -{5\sqrt{181} } < 0

Второй корень нам не подходит по причине отрицательности. Значит:

\displaystyle a = \sqrt{ {5\sqrt{181}}-50}

Задача решена!

ответ:   \displaystyle \sqrt{ {5\sqrt{181}}-50} или около 4,16 (см).
Определите сторону основания правильной четырехугольной пирамиды, если её высота 5 см, а площадь бок
4,7(36 оценок)
Ответ:
lizaroma224
lizaroma224
28.05.2022
Если нарисовать всё, что тут написано, то получается четырёхугольник с противолежащими вершинами А и К, вписанный в треугольник. по определению растояния от точки до прямой у него 2 прямых угла (скажем Л и М) и две равные стороны КЛ=КМ. вообще-то очевидно, что его диагональ (отрезок АК) будет бисектриссой угла А - уж очень он симметричный, но как это доказать или из какого свойства это следует - не приходит на ум. может и так сойдёт?
Если постулировать, что АК - бисектрисса А, то она делит сторону ВС пропорционально длинам соответствующих сторон (это из свойств бисектриссы)
АВ/АС=ВК/СК и ВК+СК=18
12/15=(18-СК)/СК
12СК+15СК=270
СК=10 ВК=8
4,5(57 оценок)
Это интересно:
Новые ответы от MOGZ: Математика

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ