№2. Каждый символ можно выбрать двумя всего 10 символов; ⇒есть 2×2×2×2×2×2×2×2×2×2=2²×2²×2²×2²×2²=4×4×4×4×4=4²×4³=16×16×4= =1024 различных построения последовательности. №3. Положение первого флажка можно выбрать пятью второго-тоже пятью; т. е. всего можно передать 5×5=25 различных сигналов.(если флажки могут принимать одинаковое положение, если не могут, то можно передать 5×4=20 различных сигналов, т. к. второй флажок сможет принять только 4 различных положения). №4. (Если Карлсоны могут пробовать одинаковые варенья, но ни один из них не может пробовать каждое варенье более 1 раза) Первый может первое варенье второе -9, третье-8. ⇒ он может выбрать 3 различных варенья 10×8×9=720 разными Два другие тоже могут выбрать 3 варенья 720 разными аналогично); ⇒всего есть 720+720+720=2160 различных выбора варений тремя Карлсонами.
В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.