Есть правильный кубик, у которого на противоположных гранях написаны цифры 1, 2 и 3 соответственно. Пусть Х - число единиц, выпавших при двух бросаниях кубика. Найти закон распределения случайной величины Х, а также М[Х] и D[Х].
2. Плотность распределения случайной величины Х имеет вид:
Найти: а) постоянную С; б) функцию распределения; в) .
3. Двумерная случайная величина (Х, Y) - координаты точки - распределена равномерно в круге радиуса R с центром в начале координат. Пусть Z - расстояние от этой точки до начала координат. Найти M[Z] и D[Z].
Решения
1. Легко сообразить, что , то есть оба раза выпадает 2 или 3.
Один раз 1 может выпасть или при первом, или при втором бросании, и, следовательно,
.
Очевидно, что .
Поскольку сумма всех вероятностей равна 1, то ряд распределения построен правильно:
0 1 2
4/9 4/9 1/9
Отсюда получаем функцию распределения:
Числовые характеристики в данном случае найти легко непосредственно (то есть, не прибегая к производящим функциям).
Математическое ожидание
.
Второй начальный момент:
.
Дисперсия
Задача №1 решена.
2. Исходя из условия нормировки, получим:
откуда .
Функция распределения
.
Вероятность попадания в интервал в силу специфики данного распределения равна, очевидно, вероятности попадания в интервал , а она составит
Итак,
Задача №2 решена.
3. При решении этой задачи нужно использовать методы вычисления характеристик функций нескольких случайных аргументов.
В общем случае, если СВ есть функция n
Пошаговое объяснение:
ответ: функция имеет минимум, равный -3/8, в точке M(1/8; 3/8; -3/8). Максимума функция не имеет.
Пошаговое объяснение:
1. Находим первые и вторые частные производные и после приведения подобных членов получаем:
du/dx=6*x-4*y-2*z, du/dy=-4*x+10*y+6*z-1, du/dz=-2*x+6*y+8*z+1, d²u/dx²=2, d²u/dy²=10, d²u/dz²=8, d²u/dxdy=-4, d²u/dydx=-4, d²u/dxdz=-2, d²u/dzdx=-2, d²u/dydz=6, d²u/dzdy=6.
2. Приравнивая нулю первые частные производные, получаем систему уравнений:
6*x-4*y-2*z=0
-4*x+10*y+6*z=1
-2*x+6*y+8*z=-1
Решая её, находим x=1/8, y=3/8, z=-3/8. Таким образом, найдены координаты единственной стационарной точки M (1/8; 3/8; -3/8).
3. Вычисляем значения вторых частных производных в стационарной точке:
d²u/dx²(M)=a11=6, d²u/dxdy(M)=a12=-4, d²u/dxdz(M)=a13=-2, d²u/dydx(M)=a21=-4, d²u/dy²(M)=a22=10, d²u/dydz(M)=a23=6, d²u/dzdx(M)=a31=-2, d²u/dzdy(M)=a32=6, d²u/dz²(M)=a33=8
4. Составляем матрицу Гессе:
H = a11 a12 a13 = 6 -4 -2
a21 a22 a23 -4 10 6
a31 a32 a33 -2 6 8
5. Составляем и вычисляем угловые миноры матрицы Гессе:
δ1 = a11 = 6, δ2 = a11 a12 = 44, δ3 = a11 a12 a13 = 192
a21 a22 a21 a22 a23
a31 a32 a33
6. Так как δ1>0, δ2>0 и δ3>0, то точка М является точкой минимума, равного u0=u(1/8; 3/8; -3/8)=-3/8.
Появилась новая и более удобная одежда;
Создавались новые предметы быта;
Казаки начали вести обязательную официальную военную службу;
Женщина стала центральной фигурой семьи;
Огромное кол-во новообрядцев