М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
незнайка2901
незнайка2901
28.09.2022 04:47 •  Математика

дам: отметьте на координатной прямой точки соответствующие числам -2; -2,5; -3; -3,5.

👇
Ответ:
LadnoOK
LadnoOK
28.09.2022

Відповідь: https://ykl-res.azureedge.net/6b1c4237-4c20-4a7f-b4ff-671abf6ec5b4/%D0%9C_I_01_t%281%29.png - Сайт где прямая

на точке -2 будет точка 1

точка -2,5 по середине между -2 и -3

3тя точка на -3

4 ая точка ( 3,5) по середине между -3 и -4

Покрокове пояснення:

4,6(86 оценок)
Открыть все ответы
Ответ:
fogeimof
fogeimof
28.09.2022
1) Int (-1; 2) (x^2 + 1) dx = (x^3/3 + x) | (-1; 2) = 2^3/3 + 2 - (-1^3/3 - 1) =
= 8/3 + 2 + 1/3 + 1 = 9/3 + 3 = 6

2) Int (-2; 4) (x^3/3) dx = -Int (-2, 0) (x^3/3) dx + Int (0, 4) (x^3/3) dx =
= -x^4/12 | (-2; 0) + x^4/12 | (0; 4) = 0 + (-2)^4/12 + 4^4/12 - 0 =
= 16/12 + 256/12 = 4/3 + 64/3 = 68/3
Часть графика от -2 до 0 находится ниже оси Ох, поэтому ее нужно прибавить, а не вычесть.
3) Найдем точки пересечения графиков
x^2 = -3x
x^2 + 3x = x(x + 3) = 0
x1 = -3; x2 = 0
График y = -3x в этой области лежит выше, чем y = x^2
Int (-3; 0) (-3x - x^2) dx = (-3x^2/2 - x^3/3) | (-3; 0) =
= 0 - (-3*(-3)^2/2 - (-3)^3/3) = -(-3*9/2 + 27/3) = 27/2 - 9 = 13,5 - 9 = 4,5
4,5(84 оценок)
Ответ:

Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ((3x)^{2}-y^{2})^{2}; В следующих двух слагаемых вынесем общий множитель "40": 40(9x^{2}+y^{2})=40((3x)^{2}+y^{2}); В итоге получим следующее уравнение: ((3x)^{2}-y^{2})^{2}-40((3x)^{2}+y^{2})+400=0. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо (3x)^{2}-y^{2} будет стоять (3x)^{2}+y^{2}; Это приведет к тому, что придется убавить 2\times 18x^2y^2=4(3xy)^{2}; В итоге: ((3x)^{2}+y^{2})^{2}-40((3x)^{2}+y^{2})+400= 4(3xy)^{2}; Слева стоит квадрат суммы. Уравнение примет вид: ((3x)^{2}+y^{2}-20)^{2}=(6xy)^{2} \Leftrightarrow ((3x)^{2}+y^{2}-20+6xy)((3x)^{2}+y^{2}-20-6xy)=0; Сворачивая еще раз: ((3x+y)^{2}-20)((3x-y)^{2}-20)=0; Получаем серию прямых: \pm 3x+\sqrt{20},\; \pm3x-\sqrt{20}; А теперь приступим к рассмотрению первого уравнения.

Это уравнение задает круг с центром в точке (0, 0) и радиусом \sqrt{2} ; Рассмотрим прямую y=3x+\sqrt{20}; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. \frac{\sqrt{20}\times 3}{3\times 10\sqrt{2}}=\frac{r}{\sqrt{20}} \Leftrightarrow r=\sqrt{2}; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5} } ); Ну а все решения:

(\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5})

4,6(12 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ