Пусть было а- команд Тогда каждый сыграл (а-1) игру Тогда всего игр было сыграно : а(а-1)/2 деление на два тут нужно, чтобы учесть, что если команда 1 сыграла с командой 2, то это то же самое, что и команда 2 сыграла с командой 1 (если этого не учесть, получим что две команды играли друг с другом 2 раза, что противоречит условию) Не зависимо от результата игры, в каждой игре разыгрывается (либо 2 - 0, либо 1-1, либо 0-2) Таким образом за всю игр было разыграно: a(a-1)/2*2=a(a-1) Это кол-во равно сумме всех игроков. 3 команд мы знаем точно: 7, 5, 3 остальных команд мы не знает, поэтому обозначим сумму оставшихся команд через "z" Тогда: 7+5+3+z = a(a-1)=a^2-a Не трудно догадаться, что оставшихся команд с неизвестными было : (a-3) команды (т.к. у 3 команд известны) При этом известно, что каждая из этих команд набрала меньше значит суммарно они набрали меньше 3(a-3) тогда: z < 3(a-3) выразим z из верхнего уравнения: z=a^2-a-15 и z < 3(a-3) Тогда: a^2-a-15<3a-9 a^2-4a -6<0 a^2-4a+4-10<0 (a-2)^2-10<0 (a-2-sqrt(10))(a-2+sqrt(10))<0 2-sqrt(10)<a<2+sqrt(10) 3=<a<=5 a=3, отсюда получаем, что всего в игре было разыграно а из условия было разыграно более 15 a=4, отсюда получаем, что было разыграно 12, а их было из условия более 15 a=5, отсюда получаем, что было разыграно из которых получили 1+2+3 места, следовательно две оставшиеся команды получили: 20-15 = отсюда следует, что одна из этих 2 команд получила не менее что противоречит условию ответ: нет не могли
Пусть было а- команд Тогда каждый сыграл (а-1) игру Тогда всего игр было сыграно : а(а-1)/2 деление на два тут нужно, чтобы учесть, что если команда 1 сыграла с командой 2, то это то же самое, что и команда 2 сыграла с командой 1 (если этого не учесть, получим что две команды играли друг с другом 2 раза, что противоречит условию) Не зависимо от результата игры, в каждой игре разыгрывается (либо 2 - 0, либо 1-1, либо 0-2) Таким образом за всю игр было разыграно: a(a-1)/2*2=a(a-1) Это кол-во равно сумме всех игроков. 3 команд мы знаем точно: 7, 5, 3 остальных команд мы не знает, поэтому обозначим сумму оставшихся команд через "z" Тогда: 7+5+3+z = a(a-1)=a^2-a Не трудно догадаться, что оставшихся команд с неизвестными было : (a-3) команды (т.к. у 3 команд известны) При этом известно, что каждая из этих команд набрала меньше значит суммарно они набрали меньше 3(a-3) тогда: z < 3(a-3) выразим z из верхнего уравнения: z=a^2-a-15 и z < 3(a-3) Тогда: a^2-a-15<3a-9 a^2-4a -6<0 a^2-4a+4-10<0 (a-2)^2-10<0 (a-2-sqrt(10))(a-2+sqrt(10))<0 2-sqrt(10)<a<2+sqrt(10) 3=<a<=5 a=3, отсюда получаем, что всего в игре было разыграно а из условия было разыграно более 15 a=4, отсюда получаем, что было разыграно 12, а их было из условия более 15 a=5, отсюда получаем, что было разыграно из которых получили 1+2+3 места, следовательно две оставшиеся команды получили: 20-15 = отсюда следует, что одна из этих 2 команд получила не менее что противоречит условию ответ: нет не могли
7 3/10+25/28x=8 13/35
25/28x=8 13/35-7 3/10
25/28x=8 26/70-7 21/70
25/28x=1 5/70
25/28x=1 1/14
x=15/14:25/28
x=15•28/14•25
x=6/5
x=1 1/5
ответ: 1 1/5
3/8x+7/12x-5/6x=9/32
9/24x+14/24x-20/24x=9/32
23/24x-20/24x=9/32
3/24x=9/32
1/8x=9/32
x=9/32:1/8
x=9•8/32
x=9/4
x=2 1/4
ответ: 2 1/4
Пошаговое объяснение: