1.Чтобы доказать первое утверждение составим числовое выражение согласно условиям утверждения:
В этом выражении деление на повторяется, поэтому вынесем это действие за скобку. Получим такое числовое выражение:
И решим его: В ответе у нас получилось целое число. Значит можно считать утверждение "если каждое из двух чисел делится на , то и их сумма делится на .
2.Для доказательства второго утверждения составим числовое выражение соответствующее условиям утверждения:
Вынесем общий делитель за скобку:
Решим получившееся выражение:
Так как число в ответе целое можно считать утверждение "если одно из двух чисел делится на ,то их произведение делится на " доказанным.
Пусть х литров расходует легковой автомобиль на 100 км, тогда грузовой расходует х+10 литров бензина. Легковой автомобиль проезжает у км на 1 литре, тогда у-5 км проезжает грузовой автомобиль на 1 литре бензина. Составим и решим систему уравнений х*у=100 (х+10)/100=1/(у-5)
Выразим значение х из первого уравнения: х=100/у Подставим его во второе уравнение: (100/у+10)/100=1/(у-5) 100/у:100+10/100=1/(у-5) (сократим на 10) (100/у+10)/10=10/(у-5) 10/у+1=10/(у-5) (умножим на у(у-5)) 10у*(у-5)/у+1у(у-5)=10*у(у-5)/(у-5) 10(у-5)+у²-5у=10у 10у-50+у²-5у-10у=0 у²-5у-50=0 D=a²-4bc=(-5)²-4*1*(-50)=25+200=225 у₁=(-b+√D)/2a=(-(-5)+15)/2*1=20/2=10 у₂=(-b-√D)/2a=(-(-5)-15)/2*1=-10/2=-5<0 - не подходит. ответ: легковой автомобиль, расходуя 1 л бензина, может преодолеть 10 км.
В решении.
Пошаговое объяснение:
(bn)-геометрическая прогрессия; b₁ = 4; q= -2. Найдите S₅.
Формула:
Sn = [b₁ * (qⁿ - 1)]/(q - 1)
Подставить в формулу все известные значения:
S₅ = [4 * ((-2)⁵ - 1)]/(-2 - 1)
S₅ = [4 * (-32 - 1)]/(-3)
S₅ = (4 * (-33))/(-3)
S₅ = 44.