Допустим дан равнобедренный треугольник АВС, где АС основание треугольника, а АВ и ВС боковые стороны. Медиану, проведённую из угла А к стороне ВС обозначим АР, а медиану из угла С к стороне АВ обозначим СК. Получили два треугольника АКС и СРА. У этих треугольников стороны АК и СР равны, так как стороны АВ и ВС равны, а медианы делят противолежащие углу стороны пополам.
АВ=ВС АВ=2АК ВС=2РС ⇒ 2АК=2РС ⇒ АК=РС
Сторона АС - общая, а углы ∠КАС и ∠РСА равны как углы при основании равнобедренного треугольника. По первому признаку равенства треугольников (если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны) треугольники АКС и СРА равны, а значит и равны стороны АР и СК. Что и требовалось доказать.
1) Первый явно солгал, потому что перед ним вообще никого нет. Значит, он или лжец, или конформист. Если он конформист, то сосед сзади него (2-ой) сказал правду. Значит, 2-ой не лжец. Но конформист не мог соврать, если его сосед не лжец. Значит, 1-ый лжец. Тогда 2-ой соврал. Значит, 2-ой или лжец, или конформист. 1) Пусть 2-ой лжец. Тогда и 3-ий тоже соврал. Значит, он тоже лжец. И так далее, получаем, что они все лжецы. Но это нам не подходит. 2) Пусть 2-ой конформист и он соврал, тогда 3-ий сказал правду. 2-ой конформист мог соврать, т.к. у него 1-ый сосед - лжец. Значит, 3-ий рыцарь или конформист, который сказал правду. 3) Если 3-ий конформист, то 4-ый сказал правду. Значит, 4-ый рыцарь. Так мы получаем рыцарей на одного меньше, чем могли бы. 4) Если 3-ий рыцарь, то 4-ый соврал. При этом, если 4-ый лжец, то и 5-ый соврал. А если 4-ый конформист, то 5-ый сказал правду и он не лжец. Но тогда 4-ый конформист не мог соврать, т.к. у него нет соседа лжеца. Значит, 4-ый все-таки лжец, тогда 5-ый конформист, а 6 рыцарь. В итоге мы получаем, что рыцари - каждый третий: 3, 6, 9, 12, 15. Всего максимум 5 рыцарей.
2. Мне кажется, достаточно 4 ящиков, в каждом по 25 карточек, идущих через 4. То есть: 1 ящик: 1, 5, 9, 13, 17, 21, ..., 97 2 ящик: 2, 6, 10, 14, 18, 22, ..., 98 3 ящик: 3, 7, 11, 15, 19, 23, ..., 99 4 ящик: 4, 8, 12, 16, 20, 24, ..., 100
Пошаговое объяснение:
у - х = 9
7у - х = -3
Решим систему методом подстановки
у = 9 + х
7у - x = -3
1)
7у - х = -3
7(9 + х) - х = -3
63 + 7х - х = -3
7х - х = -3 - 63
6х = -66
х = -66 : 6
х = -11
2)
у = 9 + х
у = 9 + (-11)
у = 9 - 11
у = -2
ответ: (-11; -2)
у - х = 9
7у - х = -3
Решим систему методом сложения:
8у - 2х = 6 | : 2
у - х = 9
4у - х = 3
у - х = 9
х = 4у - 3
у - х = 9
1)
у - х = 9
у - (4у - 3) = 9
у - 4у + 3 = 9
у - 4у = 9 - 3
-3у = 6
у = 6 : (-3)
у = -2
2)
х = 4у - 3
х = 4*(-2) - 3
х = -8 - 3
х = -11
ответ: (-11; -2)