С
Пошаговое объяснение:
Одним из признаков ромба является то, что его диагонали взаимно перпендикулярны. В виде теоремы данный признак формулируется так:
Если диагонали параллелограмма перпендикулярны друг другу, то такой параллелограмм является ромбом.
Доказательство этой теоремы сводится к тому, чтобы доказать, что у такого параллелограмма стороны равны. Именно равенство сторон параллелограмма позволяет заключить, что это ромб.
Таким образом, нам дан параллелограмм, у которого диагонали взаимно перпендикулярны. Требуется доказать, что у такого параллелограмма все стороны равны.
⠁⠄⠄⠄⠄⠄⠐⡐⠱⡱⣻⡻⣝⣮⣟⣿⣻⣟⣻⠄⣾⣿⠿⠿⠶⠿⢿
⢀⡋⣡⣴⣶⣶⡀⠄⠄⠙⢿⣿⣿⣿⣿⣿⣴⣿⣿⣿⢃⣤⣄⣀⣥⣿⣿⠄
⢸⣇⠻⣿⣿⣿⣧⣀⢀⣠⡌⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠿⠿⣿⣿⣿⠄
⢸⣿⣷⣤⣤⣤⣬⣙⣛⢿⣿⣿⣿⣿⣿⣿⡿⣿⣿⡍⠄⠄⢀⣤⣄⠉⠋⣰
⣖⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⣿⣿⢇⣿⣿⡷⠶⠶⢿⣿⣿⠇⢀⣤
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣽⣿⣿⣿⡇⣿⣿⣿⣿⣿⣿⣷⣶⣥⣴⣿⡗
⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠄
⣦⣌⣛⣻⣿⣿⣧⠙⠛⠛⡭⠅⠒⠦⠭⣭⡻⣿⣿⣿⣿⣿⣿⣿⣿⡿⠃⠄
⣿⣿⣿⣿⣿⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄⠄⠹⠈⢋⣽⣿⣿⣿⣿⣵⣾⠃⠄
⣿⣿⣿⣿⣿⣿⣿⣿⠄⣴⣿⣶⣄⠄⣴⣶⠄⢀⣾⣿⣿⣿⣿⣿⣿⠃⠄⠄
⠈⠻⣿⣿⣿⣿⣿⣿⡄⢻⣿⣿⣿⠄⣿⣿⡀⣾⣿⣿⣿⣿⣛⠛⠁⠄⠄⠄
⠄⠄⠈⠛⢿⣿⣿⣿⠁⠞⢿⣿⣿⡄⢿⣿⡇⣸⣿⣿⠿⠛⠁⠄⠄⠄⠄⠄
⠄⠄⠄⠄⠄⠉⠻⣿⣿⣾⣦⡙⠻⣷⣾⣿⠃⠿⠋⠁⠄⠄⠄⠄⠄⢀⣠⣴
⣿⣶⣶⣮⣥⣒⠲⢮⣝⡿⣿⣿⡆⣿⡿⠃⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄
⣠⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠛⢉⢉⠉⠉⠻⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⠟⠠⡰⣕⣗⣷⣧⣀⣅⠘⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⠃⣠⣳⣟⣿⣿⣷⣿⡿⣜⠄⣿⣿⣿⣿⣿
⣿⣿⣿⣿⡿⠁⠄⣳⢷⣿⣿⣿⣿⡿⣝⠖⠄⣿⣿⣿⣿⣿
⣿⣿⣿⣿⠃⠄⢢⡹⣿⢷⣯⢿⢷⡫⣗⠍⢰⣿⣿⣿⣿⣿
⣿⣿⣿⡏⢀⢄⠤⣁⠋⠿⣗⣟⡯⡏⢎⠁⢸⣿⣿⣿⣿⣿
⣿⣿⣿⠄⢔⢕⣯⣿⣿⡲⡤⡄⡤⠄⡀⢠⣿⣿⣿⣿⣿⣿
⣿⣿⠇⠠⡳⣯⣿⣿⣾⢵⣫⢎⢎⠆⢀⣿⣿⣿⣿⣿⣿⣿
⣿⣿⠄⢨⣫⣿⣿⡿⣿⣻⢎⡗⡕⡅⢸⣿⣿⣿⣿⣿⣿⣿
⣿⣿⠄⢜⢾⣾⣿⣿⣟⣗⢯⡪⡳⡀⢸⣿⣿⣿⣿⣿⣿⣿
⣿⣿⠄⢸⢽⣿⣷⣿⣻⡮⡧⡳⡱⡁⢸⣿⣿⣿⣿⣿⣿⣿
⣿⣿⡄⢨⣻⣽⣿⣟⣿⣞⣗⡽⡸⡐⢸⣿⣿⣿⣿⣿⣿⣿
⣿⣿⡇⢀⢗⣿⣿⣿⣿⡿⣞⡵⡣⣊⢸⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⡀⡣⣗⣿⣿⣿⣿⣯⡯⡺⣼⠎⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣧⠐⡵⣻⣟⣯⣿⣷⣟⣝⢞⡿⢹⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⡆⢘⡺⣽⢿⣻⣿⣗⡷⣹⢩⢃⢿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣷⠄⠪⣯⣟⣿⢯⣿⣻⣜⢎⢆⠜⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⡆⠄⢣⣻⣽⣿⣿⣟⣾⡮⡺⡸⠸⣿⣿⣿⣿
⣿⣿⡿⠛⠉⠁⠄⢕⡳⣽⡾⣿⢽⣯⡿⣮⢚⣅⠹⣿⣿⣿
⡿⠋⠄⠄⠄⠄⢀⠒⠝⣞⢿⡿⣿⣽⢿⡽⣧⣳⡅⠌⠻⣿
⠁⠄⠄⠄⠄⠄⠐⡐⠱⡱⣻⡻⣝⣮⣟⣿⣻⣟
Пошаговое объяснение:
=-57,29
1) a=2³×3×5
b=3×5×7
НОД(a;b)=3×5=15
НОК(a;b)=2³×3×5×7=840
2) a=2³×3²×5⁴
b=2²×3³×5²
НОД(a;b)=2²×3²×5²=900
НОК(a;b)=2³×3³×=135000