Представим, что на координатной прямой находится точка A. Все точки, лежащие от нее слева, будут принадлежать открытому лучу (-∞; A); точки, лежащие справа, - открытому лучу (A; +∞). Точка A в обоих случаях числовому промежутку не принадлежит, и именно поэтому луч называется открытым. На алгебраическом языке первый открытый луч описывается как x < A (где x - это любое число, меньшее чем A), второй - как x > A (где x - любое число, большее чем A).
Луч отличается от открытого луча лишь тем, что точка входит в числовой промежуток. Обозначается это так (-∞; A] или так [A; +∞); алгебраически: x ≤ A или x ≥ A, то есть x может быть равен A.
Когда изображают числовые промежутки на координатной прямой, то если точка не принадлежит ему (как в случае с открытым лучом), то ее не закрашивают. Если же точка принадлежит числовому промежутку, то закрашивают чёрным цветом.
x²+14x+49>x²+14x
49>0
б)b в кводрате+5>10(b-2)
b²+5>10b-20
b²-10b+25>0
(b-5)²>0
при b=5 выполняется равенство
2)Извесно что а>b.Сравните:
а)18а и 18b б)-6,7а и -6,7b в)-3,7b и -3,7а
Результат сравнения запишите в виде неравенства.
a b БОЛЬШЕ 0
1 18a>18b
2. =-6.7a < -6.7b
3/ -3.7b>-3.7a
3)Оцените периметр и площядь прямоугольника со сторонами а см и b см, если известно, что 1,5<a<1,6 3,2<b<3,3
P=2(a+b)
S=ab
9.4<P<9.8
4.8<S<5.28