А) Если прямоугольник является квадратом, то его диагонали взаимно перпендикулярны и делят углы пополам. Это верное утверждение. Его называют теоремой Обратное Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема Противоположное Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема. Обратное противоположному Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема Обратное Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема. Противоположное Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема. Противоположное обратному Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
y=корень(1-4x)/x²; y=ln(x+корень(x^2+a)); y=sinx/(1+tgx); y=sin^4x +cos^4 x
Решение
y=корень(1-4x)/x²
y' = ((корень(1-4x))' *x^2 -корень(1-4x)*(x²)')/x^4 =
= ((1/2)*(1-4x)^(-1/2)*(-4)*x^2 -корень(1-4x)*2x)/x^4 =
=(-2x²/корень(1-4x) -2x*корень(1-4х))/x^4 =-2/(x²корень(1-4x)) -2корень(1-4х))/x^3
у=ln(x+корень(x^2+a))
y' = (ln(x+корень(x^2+a)))' = (1/(x+корень(x^2+a)))*(x+корень(x^2+a))'=
=(1/(x+корень(x^2+a)))*(1+(1/2)*(x^2+a)^(-1/2)*2x)=
=(1+x/корень(x^2+a))/(x+корень(x^2+a)) =
=( (x+корень(x^2+a))/корень(x^2+a))/(x+корень(x^2+a))=
= 1/корень(x^2+a)
y=sinx/(1+tgx);
y' = (sinx/(1+tgx))' = ((sinx)' *(1+tgx) - sinx*(1+tgx)')/(1+tgx)² =
= (cosx*(1+tgx) - sinx*(1/cos²x))/(1+tgx)²=
=(cosx + sinx - sinx/cos²x))/(1+tgx)²
(1+tgx)² =1+tg²x+2tgx =1/cos²x +2sinx/cosx =(1+sin(2x))/cos²x
(cosx + sinx - sinx/cos²x))/(1+tgx)² =
=(cosx + sinx - sinx/cos²x))/((1+sin(2x))/cos²x)=
=(cos³x+cos²x*sinx -sinx)/(1+sin(2x))
y=sin^4(x) +cos^4(x)
y' = (sin^4(x) +cos^4(x))' = 4sin³(x)*cos(x) +4cos³(x)*sin(x) =
= 4sin(x)*cos(x)(sin²(x) + cos²(x)) = 4sin(x)*cos(x) =2sin(2x)