Разложим каждое число на простые множители:
6|2 18|2 30|2
3|3 9|3 15|3
1| 3|3 5|5
1| 1|
Представим каждое число в виде произведения простых множителей:
6=(2*3)
18=(2*3)*3
30=(2*3)*5
Чтобы найти наибольший общий делитель, перемножим общие для всех трех чисел простые множители:
2*3=6 > НОД=6
Чтобы найти наименьшее общее кратное, нужно перемножить простые множители всех трех чисел следующим образом:
2*3*3*5=2*9*5=2*45=90 > НОК=90
Тройка в этом произведении встречалась дважды, т.к. в разложении числа 18 на простые множители она также попадалась дважды.
Из условия нам известно, что один ученик может убрать класс за 20 мин, а второй за 30 мин.
Для того, чтобы найти за сколько минут оба ученика уберут класс давайте прежде всего найдем какую часть класса первый и второй ученик может убрать за одну минуту.
1 : 20 = 1/20 класса уберет первый ученик за 1 минуту;
Тогда второй ученик уберет:
1 : 30 = 1/30 класса уберет второй ученик за 1 минуту.
Совместно они уберут за 1 минуту:
1/20 + 1/30 = 3/60 + 2/60 = 5/60 = 1/12 класса.
Нам осталось найти сколько уйдет времени на уборку всего класса:
1 : 1/12 = 12 минут.
ответ:12 минут
125,4+0,685=126,085
2-1,75=0,25
320,3+71,257=391,557
369,36-370,5= -1,14