Пошаговое объяснение:
1. x+5-2(4-x)-x-4 = x + 5 - 8 + 2x - x - 4 = 2x - 7
2.4(y+4)-5(2-y)-(5+4)y-3 = 4y + 16 - 10 + 5y - 9y - 3 = 3
3.3(b+4)-3(5-b)-b-3 = 3b + 12 - 15 + 3b - b - 3 = 5b - 6
4. (k+3)-(2-k)-(1+4)k-2 = k + 3 - 2 + k - 5k - 2 = -3k - 1
5.3(m+5)-4(5-m)-(4+3)m-1 = 3m + 15 - 20 + 4m - 7m - 1 = -6
6. 3(d+2) -4(1-d)-d-4 = 3d + 6 - 4 + 4d - d - 4 = 6d - 2
7. 4(f+2)-4(2-f)-(4+4)f-3 = 4f + 8 - 8 + 4f - 8f - 3 = - 3
8. 5(a+3)-3(1-a)-a-3 = 5a + 15 - 3 + 3a - a - 3 = 7a + 9
9.2(t+4) -4(2-t)-(442)t-1 = 2t + 8 - 8 + 4t - 442t - 1 = -436t - 1
10. 4(n+1) - (5-n)-n-3 = 4n + 4 - 5 + n - n - 3 = 4n - 4
Ну с двоечником и отличником можно так. Пусть отличнику задали х задач, тогда двоечнику 1,5х задач. Пусть каждый из них решил y задач. При этом процент задач решенный двоечником
Соответственно процент, нерешенный отличником.
По условию:
При этом ,надо полагать, х и y целые числа. Но нас интересуют не столько они, сколько отношение y/x=y/x (4)
Глядя на уравнение (3), в свете вышесказанного, у меня возникает мысль ввести новую переменную u:
Тогда с учетом (5) преобразуем уравнение (3) к виду:
находим u из (6):
u=y/x это "процент" решенных задач отличником (деленный на 100)
тогда решенный процент u*100=0,6*100=60%
ОТВЕТ: Отличник решил 60% задач.
Ну добавлю еще ответ о полоске, как я решал. Может весь не успею, но метод, думаю будет ясен.