К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателюНапример, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
ответ: 15/20 < 16/20
Сложение и вычитание дробейЕсли необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.
Например, необходимо найти сумму дробей 1/2 и 1/3
ответ: 5/6
Теперь найдем разность дробей 1/2 и 1/4
ответ: 1/4
Умножение и деление дробейТут решение дробей несложное, здесь все достаточно просто:
Умножение - числители и знаменатели дробей перемножаются между собой;Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.Например:
На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.
Для закрепления материала рекомендуем также посмотреть наше видео:
Пусть x - количество однорублёвых монет, y - двухрублёвых, а z - пятирублёвых. Тогда получается такая система уравнений:
1x + 2y + 5z = 34
x + y + z = 15
x = y + z + 1
Подставим x во второе уравнение, например:
y + z + 1 + y + z = 15
2y + 2z = 15 - 1
2y + 2z = 14
y + z = 7
Теперь выразим напр. у:
y = 7 - z
И подставим х и у в первое уравнение:
y + z + 1 + 2(7 - z) + 5z = 34
7 - z + z + 1 + 14 - 2z + 5z = 34
3z = 34 - 7 - 1 - 14
3z = 12
z = 4
Подставим в уравнение с выраженным y:
y = 7 - 4
y = 3
ответ: У Лизы 3 двухрублёвые монеты