По условию мы получаем четыре равнобедренных треугольника: АСF, СFЕ, FED, BDE. Углы при основании равнобедренного треугольника равны. Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине. Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как? Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А. И так до конца, т.е до выражения угла А3 через А. Далее составляется уравнение: 2А+А3(выраженное через А)=180. Если все правильно выразите, то должно получиться 9А=360, т.е. А=40. Успехов, дерзайте!
Треугольники будут подобны по 2-му признаку(Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны), а из свойств подобия треугольников, получается, что отношение периметров и длин биссектрис , медиан , высот и серединных перпендикуляров равно коэффициенту подобия. А коэффициент подобия, в данном случае, равен 2(свойство средней линии). значит периметр треугольника ВMN равен половине периметра треугольника АВС: 4 корня из 7: 2= 2 корня из 7
2. Переохлаждение организма
3. Возможность получения травмы