(1) (a+b)+c/(a+b)-c =7 => (a+b)+c=7*(a+b)- 7*c => 8*c = 6*(a+b) => c = (6/8)*(a+b)
(2)(a+c)+b/(a+c)-b =3,5 =>(a+c)+b=3,5*(a+c)-3,5*b => 4,5*b=2,5*(a+c) => b=(5/9)*(a+c)
Подставим в (2) выражение для с из (1), получим
(3) b=(5/9)*(a+(6/8)*(a+b)) => (9/5)*b=a+(6/8)*a+(6/8)*b => (9/5 -6/8)*b = (14/8)*a => (42/40)*b = (14/8)*a => b=(14/8 * 40/42)*a = (10/6)*a
(4) Используя (3), выразим c через а в (1)
с=(6/8)*(a+(10/6)*a) = (6/8)*a+(10/8)*a = 2*a
(5) Используя (3) и (4), имеем
(a+b+c)/(b+c-a) = (a+(10/6)*a+2*a)/((10/6)*a+2*a-a) = ((28/6)*a) / ((16/6)*a) =
= (28/6)*(6/16) = 28/16 = 7/4 = 1,75
Пошаговое объяснение:
Пошаговое объяснение:или 41, или 50
Пошаговое объяснение:
число n записано разными цифрами (т.е. в записи числа нет двух одинаковых чисел). Это важно!
Чтобы найти число n-1 необходимо от числа n отнять единицу. Это понятно. И понятно, что если число n заканчивается на любую цифру, кроме 0, то и сумма цифр числа n-1 станет на 1 меньше.
Пример:
если число n заканчивается на цифру 8, то число n-1 заканчивается на цифру 8-1=7. Следовательно сумма цифр числа n-1 равна в этом случае сумме цифр числа n минус 1, т.е. 42-1=41.
Другое дело, если число n заканчивается на цифру 0. Когда мы отнимем от такого n единицу, то число n-1 будет заканчиваться на цифру 9 (т.е. сумма цифр увеличится на 9), но цифра, стоящая перед цифрой 0 - она же уменьшится на единицу (т.е. сумма цифр уменьшится на 1). Итак если число n заканчивается на цифру 0, то сумма цифр числа n-1 увеличится на 9 и уменьшится на 1.
Пример:
n=20; (сумма двух последних цифр2+0=2)
n-1=20-1=19 (сумма двух последних цифр 1+9=10)
Т.е. предпоследняя цифра уменьшилась на 1, а последняя увеличилась на 9. Сумма увеличится на 8, и станет равна 42+8=50.
звездочки - это любые цифры. Число n не может быть более, чем 10-и значное, иначе цифры начнут повторяться. Поэтому в числе n 8 звездочек, и две последние цифры, которые нас интересуют.
Замечание: было бы сложнее, если бы число n заканчивалось на цифры 00, но этого не может быть по условию задачи (все цифры разные!)
на 42 года.
Пошаговое объяснение:
Пусть сейчас внучке х лет, тогда деду = 8х лет.
Три года назад:
Внучке - (х - 3) лет, деду - (8х - 3) лет
И дед был в 15 раз старше внучки.
Составим уравнение:
15 * (x - 3) = 8x - 3
15x - 45 = 8х - 3
15х - 8х = -3 + 45
7х = 42 |:7
x = 6
⇒ внучке - 6 лет, а деду 8х = 6·8 = 48 (лет)
Дед старше внучки на
48 - 6 = 42 (года)