ответ: 80.
Пошаговое объяснение:
Так как выражение под знаком корня должно быть неотрицательным, то прежде всего должно выполняться неравенство ln [cos(5*π*x)]≥0. Но так как при любом значении x cos(5*π*x)≤1, то возможно только равенство ln[cos(5*π*x)]=0. Решая уравнение cos(5*π*x)=1, находим 5*π*x=2*π*n, где n∈Z. Отсюда x=2*n/5. Возвращаясь теперь к исходному неравенству и подставляя туда значение x=2*n/5, получаем неравенство /8*n²/25-8*n+37/≤5, которое приводится к виду n²-25*n+100≤0, или (n-20)*(n-5)≤0. Решая это неравенство методом интервалов, находим 5≤n≤20, то есть n может быть любым натуральным числом от 5 до 20. Тогда решения неравенства можно записать в виде x=2*n/5, где n∈[5;20] и n∈Z. Сумма же всех решений S=2/5*(5+6+...+20)=2/5*200=80.
ответ: 80.
Пошаговое объяснение:
Так как выражение под знаком корня должно быть неотрицательным, то прежде всего должно выполняться неравенство ln [cos(5*π*x)]≥0. Но так как при любом значении x cos(5*π*x)≤1, то возможно только равенство ln[cos(5*π*x)]=0. Решая уравнение cos(5*π*x)=1, находим 5*π*x=2*π*n, где n∈Z. Отсюда x=2*n/5. Возвращаясь теперь к исходному неравенству и подставляя туда значение x=2*n/5, получаем неравенство /8*n²/25-8*n+37/≤5, которое приводится к виду n²-25*n+100≤0, или (n-20)*(n-5)≤0. Решая это неравенство методом интервалов, находим 5≤n≤20, то есть n может быть любым натуральным числом от 5 до 20. Тогда решения неравенства можно записать в виде x=2*n/5, где n∈[5;20] и n∈Z. Сумма же всех решений S=2/5*(5+6+...+20)=2/5*200=80.
2π см.
Пошаговое объяснение:
В задаче, видимо, речь о длине дуги окружности, соответствующей центральному углу в 40°.
Длина дуги окружности в n° вычисляется по формуле
l = (πRn)/180.
В нашем случае
l = (π•9•40)/180 = 2π (см).
Иногда рассуждают так:
2πR - 360°
x - 40°
2πR/x = 360°/40°
2πR/x = 9
x = 2πR/9
Если R = 8 см, то x = 2π•9/9 = 2π (см).