Прямая проходящая через точки A, B имеет уравнение:
y=ax+t, подставим координаты точек чтобы найти уравнение в явном виде.
4=a·o+t ⇒ t=4; 0=a·5+t ⇒ a=-4/5=-0,8
Исходя из последовательности вершин четырёхугольника, получаем, что координаты M(x;y) удовлетворяют неравенству y≥-0,8x+4.
Заметим, что S(AOBM) = S(AOB)+S(BMA), при этом S(AOBM)=20, S(AOB)=AO·OB/2=10.
Тогда S(BMA)=10.
Поскольку площадь треугольника постоянная и длина стороны AB тоже. То высота опущенная из M на AB должна быть постоянной, откуда M лежит на прямой параллельной AB. Тогда угол наклона k равен углу наклона прямой проходящей через точки A, B.
k = -0,8
ответ: -0,8.
Угол между осями координат 90°, поэтому треугольник получиться прямоугольным. Найти площадь круга можно через радиус, а радиус, описанной окружности около прямоугольного треугольника, можно найти через его гипотенузы (половина от гип.) т.к. угол в 90° опирается на диаметр, то есть гипотенуза это диаметр. Так вот нам надо найти гипотенузы этого треугольника, а именно её половину. Для этого найдём точки пересечения прямой с осями координат, а затем расстояние между ними, это и будет гипотенуза, дальше думаю понятно.