123
456
12345
Пошаговое объяснение:
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.
123 1+2+3=6 делится на 3, не делится на 9 (Подходит)
456 4+5+6=15 делится на 3, не делится на 9 (Подходит)
3456 3+4+5+6=18 делится на 3, делится на 9 (Не подходит)
234567 2+3+4+5+6+7=27 делится на 3, делится на 9 (Не подходит)
123456789 1+2+3+4+5+6+7+8+9=45 делится на 3, делится на 9 (Не подходит)
12345 1+2+3+4+5=15 делится на 3, не делится на 9 (Подходит)
0,5x2 + 21x + 110·lnx + 43
ОДЗ: x > 0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10Эти точки не принадлежат интервалу (0; + ∞)
ОДЗ: x > 0y`=0,5·2x+21+(110/x)y`=0(x2+21x+110)/x=0x≠0, так как по ОДЗ х > 0x2+21x+110=0D=(21)2–4·110=441–440=1x=(–21–1)/2=–11 или х=(–21+1)/2=–10Эти точки не принадлежат интервалу (0; + ∞)y` > 0 на (0; + ∞), значит функция возрастает на этом интервале и не имеет точки максимума.
Приклепляю