Вариант 1:
основное свойство пропорции (6 класс математика)
если a : b = c : d, то a x d = c x b
для нашего случая получим:
5,6 х 3 = 0,4 х (3х + 12)
16,8 = 1,2х + 4,8
1,2х = 16,8 - 4,8
1,2х = 12
х = 12 : 1,2
х = 10
Вариант 2:
5,6 = 0,4 х 14
3х + 12 = 3 х (х + 4)
< var > \frac{0,4}{3} = \frac{0,4 \cdot 14}{3 \cdot (x+4)} < /var ><var>
3
0,4
=
3⋅(x+4)
0,4⋅14
</var>
это возможно только тогда, когда
< var > \frac{14}{(x+4)} = 1 < /var ><var>
(x+4)
14
=1</var>
получается, что числитель и знаменатель равны
14 = х + 4
х = 14 - 4
х = 10
Теорема Фалеса: «Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.»
· Сторона АВ оказалась поделена парал-ми прямыми на три равных отрезка (АК, КМ, МВ), => сторона АС тоже поделена ими на три равных между собой отрезка (АР, РN, NC);
· Наименьший отрезок, содержащийся между сторонами треугольника, - отрезок КР (=3);
· Рассмотрим ∆АМN: KP - средняя линия данного треугольника.
Средняя линия треугольника - отрезок, концами которого являются середины двух сторон треугольника. При этом данный отрезок параллелен третьей стороне треугольника и равен её половине.
Из определения следует, что КР=1/2МN или MN=2KP; => MN=2*3=6;
· Рассмотрим трапецию РКВС: МN - средняя линия трапеции.
Средняя линия трапеции - отрезок, концами которого являются середины боковых! сторон трапеции. При этом данный отрезок параллелен основаниям трапеции и равен их полусумме.
Из определения следует, что МN=(KP+BC)/2; 2MN-BC=KP; BC=12-3=9.
ответ: 9.
1. а) а² - 19а + 70 б) 10х² + 3х - 4 в) 15х² + 62ху + 63у² г) b³ + 4b² - 30b
2. а) (х –4 у)(х + 5) б) (а - b) (16 + х)
3. 4 м ширина бассейна, 10 м длина бассейна
4. х = 2
5. ∠2 = 143° ∠3 = 37° ∠4 = 37°
6. ∠АВС = ∠АСВ = 57º ∠САВ = 66º ∠ВАН = ∠САН = 33º
Пошаговое объяснение:
1. а) (а – 14) (а – 5) = а² - 14а - 5а + 70 = а² - 19а + 70
б) (5х + 4) (2х – 1) = 10х² + 8х - 5х - 4 = 10х² + 3х - 4
в) (3x + 7y) (5x + 9y) = 15х² +35ху + 27ху + 63у² = 15х² + 62ху + 63у²
г) (b – 3) (b² + 7b – 9) = b³ - 3b² + 7b² - 21b - 9b + 27 = b³ + 4b² - 30b
2. а) х (х – 4у) + 5 (х –4 у) = (х –4 у)(х + 5)
б) 16а-16b+xа-xb = (16а - 16b) + (xа – xb) = 16(а - b) + х(а - b) = (а - b) (16 + х)
3. Пусть х м - ширина бассейна, тогда х+6 м - длина бассейна
По условию, дорожка идет по всему периметру бассейна и имеет ширину 0,5 м, следовательно:
х+0,5*2 = х+1 (м) - ширина вместе с дорожкой,
(х+6)+0,5*2 = х+6+1 = х+7 (м) - длина вместе с дорожкой
S бассейна = х*(х+6) = х² + 6х (м²)
S бассейна вместе с дорожкой = (х+1)(х+7) = х²+х+7х+7 = (х² + 8х + 7) м²
По условию, S дорожки = 15 м², тогда:
S бассейна вместе с дорожкой - S бассейна = S дорожки
(х² + 8х + 7) - (х² + 6х) = 15
х² + 8х + 7 - х² - 6х = 15
2х + 7 = 15
2х = 8 х = 8/2 х = 4 м ширина бассейна, 4+6 = 10 м длина бассейна
4. (5 - х)² - х (2,5 + х) = 0
25 - 10х + х² - 2,5х - х² = 0
25 - 12,5х = 0
12,5х = 25
х = 25/12,5
х = 2
5. ∠1 = ∠2 = 143° (соответственные углы)
∠3 = 180°- 143° = 37° (∠1 и ∠3 смежные углы)
∠4 =∠3 = 37° (вертикальные углы)
6. △ABC равнобедренный, т.к. AB=AC
Углы при основании равны:
∠АВС = ∠АСВ = 57º
∠САВ = 180º - 2*57º = 66º
В равнобедренном треугольнике биссектриса это высота, которая делит ∠САВ пополам:
∠ВАН = ∠САН = 66º/2 = 33º