x1, x2, x3, x4, x5, x6, x7, x8 числа при вершинах
x1+x2, x2+x3, x3+x4, x4+x5, x5+x6, x6+x7, x7+x8, x1+x8 числа на сторонах
или запишем как
x1+x2=a1
x2+x3=a2
x3+x4=a3
x4+x5=a4
x5+x6=a5
x6+x7=a6
x7+x8=a7
x8+x1=a8
Отметим что если такие числа существует то должно выполнятся равенство
a1+a3+a5+a7=a2+4+a6+a8 (порядок в каком брать числа здесь не важен)
Проверим можно ли разбить 11,12,13,14,15,16,17,18 в нужную сумму, сложив числа 11+12+13+14+15+16+17+18=116 откуда 116/2=58 то есть такой порядок последовательности возможна, как пример
x1=2, x2=9, x3=3, x4=11, x5=2, x6=13, x7=3, x8=15
введем обозначения:
П - первая книга
В - вторая книга
Т - третья книга
Ч - четвертая книга
В + Т + Ч = 246
П + Т + Ч = 231
П + В + Ч = 223
П + В + Т = 242 всё сложим:
3П + 3В + 3Т + 3Ч = 246 + 231 + 223 + 242
3П + 3В + 3Т + 3Ч = 942 разделим обе части на 3
П + В + Т + Ч = 314
314 руб - стоимость четырех книг вместе
314 - 246 = 68 ( руб. ) - стоимость первой книги
314 - 231 = 83 ( руб. ) - стоимость второй книги
314 - 223 = 91 ( руб. ) стоимость третьей книги
314 - 242 = 72 ( руб. ) - стоимость четвертой книги
ответ: 68 руб.; 83 руб.; 91 руб.; 72 руб.
проверка: 83 + 91 + 72 = 246 ( руб .) - верно
68 + 91 + 72 = 231 ( руб. ) - верно
68 + 83 + 72 = 223 ( руб. ) - верно
68 + 83 + 91 = 242 ( руб. ) - верно