В магазин пришли покупателей. Из них(n+40) купили смартфон, 60 купили компьютер, а (n+3) вообще ничего не купили. Сколько человек купили и смартфон, и компьютер? N=8
Натуральные числа - это числа, которые используются для счёта предметов (1, 2, 3 ...). n - первое натуральное число n + 1 - второе натуральное число n + 2 - третье натуральное число n + 3 - четвёртое натуральное число Уравнение: (n + 2) * (n + 3) - n * (n + 1) = 58 n^2 + 2n + 3n + 6 - n^2 - n = 58 (n^2 - n^2) + (2n + 3n - n) + 6 = 58 4n + 6 = 58 4n = 58 - 6 4n = 52 n = 52 : 4 = 13 - первое число 13 + 1 = 14 - второе число 13 + 2 = 15 - третье число 13 + 3 = 16 - четвёртое число ответ: 13, 14, 15, 16.
Решение: Если сумма цифр равна 4, значит, в числе могут быть только цифры 0, 1, 2, 3, 4. Пусть 4 — наибольшая цифра, которая есть в искомом числе. Значит, она стоит на первом месте, а три остальные цифры равны нулю — получили число 4000. Если наибольшая цифра — 3, то возможны четыре варианта: 3100, 3010, 1300, 1030. Варианты 3001, 1003 невозможны, так как число с единицей на конце не является чётным. Пусть наибольшая цифра — 2, в этом случае получим числа 2110, 2200, 2020, 2002, 1210, 1120, 1102, 1012. Если наибольшая цифра — 1, то все цифры числа равны 1, но число 1111 нечётное, поэтому такой вариант невозможен. Наконец, числа 0000 не существует. Всего получается 1+4+8+0=13 чисел.
n - первое натуральное число
n + 1 - второе натуральное число
n + 2 - третье натуральное число
n + 3 - четвёртое натуральное число
Уравнение:
(n + 2) * (n + 3) - n * (n + 1) = 58
n^2 + 2n + 3n + 6 - n^2 - n = 58
(n^2 - n^2) + (2n + 3n - n) + 6 = 58
4n + 6 = 58
4n = 58 - 6
4n = 52
n = 52 : 4 = 13 - первое число
13 + 1 = 14 - второе число
13 + 2 = 15 - третье число
13 + 3 = 16 - четвёртое число
ответ: 13, 14, 15, 16.
Проверка: 15 * 16 - 13 * 14 = 58
240 - 182 = 58
58 = 58