всё подробно решено на фото
Это показательное уравнение вида , где неизвестная переменная.
Если сделаем основания степени равными, то по правилу сможем приравнять показатели степеней и решить обычное линейное уравнение.
Для этого, нужно член уравнения представить в виде числа со степенью так, чтобы в основании было число . Это явно число (проверка: ).
Значит теперь, когда наше показательное уравнение имеет вид , то можем приравнять показатели степени и получим стандартное линейное уравнение. Решение этого уравнения и будет являться корнем исходного показательного уравнения.
Итак, мы получили уравнение после того, как приравняли показатели степени. Решаем это уравнение. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое. Т.е. .
Из этого следует, что ответ нашего показательного уравнения равен .
ответ:Пример:
известны координаты 25 точек:
A(7 ; 18) , B(9 ; 18) , C(14 ; 22) , D(14 ; 24) , E(18 ; 19) , F(17 ; 15) , G(20 ; 10) , H(17 ; 3) , I(19 ; 1) , J(15 ; 1) , K(14 ; 3) , L(11 ; 3) ,
M(12 ; 1) , N(7 ; 1) , O(2 ; 11) , P(1 ; 18) , Q(2 ; 23) , R(5 ; 24) , S(7 ; 22) , T(5 ; 11) , U(8 ; 7) , V(12 ; 7) , W(16 ; 11) , X(16 ; 14) , Y(11 ; 14) .
Если отметить эти точки на координатной плоскости, а затем соединить их отрезками в последовательности A — B — C — D — E — F — G — H — I — J — K — L — M — N — O — P — Q — R — S — T — U — V — W — X — Y — A , то получим рисунок.
Пошаговое объяснение что по частям
пошаговое объяснение
2/6,4/2,5/8