Пошаговое объяснение:
объем=6³=216
Пошаговое объяснение:
. Известно, что tg(8,5rc -х) = а. Найдите значение tg(-x).
6. Известно, что sin(19,57t - х) = а и х Є 2rcj. Найдите значение cosx.
Найдиїе наименьший положительный период функции №№ 7—8.
7. Дх) = sin2 4х - cos2 4х.
8. g(x) = 0,2 sin Зх cos6x cos3x.
153
Найдите область значений функции №№ 9—10.
9. f(x) = -9sinx + 4.
10. f{x) = 0,3Х+} - 10.
11. Найдите наименьшее положительное значение аргумента, при котором график функции g{x) = 2 sinx ctgx проходит через точку, лежащую на оси абсцисс.
12. Найдите наибольшее отрицательное значение аргумента, при котором график функции h{x) = -9 cosx tgx проходит через точку оси Ох.
13. Найдите значение производной функции
/(X) = (f/^ + f/? + l)(|/7-l) в точке X0 = 2001.
14. Определите абсциссы точек, в которых угловой коэффициент' касательной к графику функции h(x) = 1 - 2sin2x равен 2.
15. При каком значении аргумента равны скорости изменения функций /(х) = -[/Зх - 10 и g(x) = У14 + 6х?
16. Найдите наибольшее положительное значение аргумента из промежутка [0; 2я], при котором скорость изменения функции /(х) = tgx не меньше скорости изменения функции g(x) = 4х + 23.
,1*1
17. Найдите нули функции g(x) =
1, если X < 3, sinx + 3, если X > 3.
18. Функция у = /(х) определена на промежутке (-6; 6). На рисунке изображен график ее производной. Найдите точки минимума функции у = /(х) на промежутке (-6; 6).
_с
1 \
\ / I
> / 0
/ 1 X
ч у г
¦ f
У — j v*/ і і і і
154
19'. Функция у = f(x) определена на промежутке [-6; 6]. На рисунке (см. рисунок к заданию 18) изображен график ее производной. Найдите промежутки убывания функции у = f(x).
20. Найдите площадь фигуры, ограниченной линиями у = ех, у = X1 X = 2, X = 0.
21. Найдите наименьшее значение функции g{x) = log0>5(2 -х2).
22. Найдите наименьшее значение функции g(x) = 1Og1(S -х2).
23. Найдите наибольшее целочисленное значение функции
у = З У {sinx - cosx)2 + 0,25.
24. Найдите наименьшее целочисленное значение функции
у = |-V36sin2x- 12 sinx + 17.
25. Найдите наибольшее целочисленное значение функции
ос оcosAxcos3* + sin4*sin3:r- 2 у = ZO о
26. Найдите наибольшее целочисленное значение функции
4 о о sinx sin 2х + cosx cos 2х — 3
г/ = Io Z
27. При каком значении т функция у = |^5х2 + тх - 3 имеет минимум в точке X0 = 1,3?
28. При каком значении т функция у = ]/тх2 + 6х - Г имеет максимум в точке X0 = 3?
29. Найдите все значения а, при которых функция
у = |/бх2 - Зах+ 1-а имеет минимум в точке X0 = —2,5.
30. Найдите все значения а, при которых функция
у = ^-6х2 + (3 + а)X + 5 - а 1
имеет максимум в точке X0 = -g.
31. При каком наибольшем отрицательном значении а функция у = sin^25x + -щ-) имеет максимум в точке X0 = я?
32. При каком наименьшем положительном значении а функция у = cos^24x + —5.^ имеет максимум в точке X0 = я?
1)3x+5y=16
2x+3y=9
Умножаем первое уравнение на 2,а второе на -3 получается
6х+10у=32
-6х-9у=-27
Складываем уравнения
у=5
подставляем в второе уравнение
2х+15=9
2х=-6
х=-3
ответ:-3;5
2)9x-7y=95
4x+y=34
Умножаем второе уравнение на 7
9х-7у=95
28х+7у=238
Складываем уравнения
37х= 333
х=333/37
х=9
подставляем х в второе уравнение
36+у=34
у=34-36
у=-2
ответ:9;2
3)3x-5y=23
2x+3y=9
Умножаем первое уравнение на 2,а второе на -3 получается
6х-5у=46
-6х-9у=-27
Складываем уравнения
-14у=19
у=-1,4
Подставляем во второе уравнение
2х-4,2=9
2х=13,2
х=6,6
ответ:6,6;-1,4
4)6x+5y=0
2x+3y=-8
умножаем второе уравнение на -3
6х+5у=0
-6х-9у=24
Складываем уравнения
-4у=24
у=-6
Подставляем в первое уравнение
6х-30=0
6х=30
х=5
ответ:5;-6
V=S*S*S=6³=6*6*6=216см³