Y=11x+ln =11x+11 ln(x+15) Для нахождения наименьшего значения функции находим первую производную данной функции y ' =(11x +ln) ' =11+ 11 = = Решаем уравнение (находим критические точки) y '=0 11x+154=0 ⇒ 11x = - 154 ⇒ x= - 154/11 = -14 При x < -14 производная функции отрицательна (функция убывает), при x > -14 производная функции положительна (функция возрастает), значит в критической точке x = -14 функция принимает минимум, найдем это значение y(-14) =11*(-14) - 11ln(-14+15) = -154 -11*ln 1 = -154 -11*0= -154 ответ: -154
а)Перепишем так
9^x*(2/3)=2^(2x+3,5)
9^x=3*2^(2x+2,5)
3^(2x-1)=2^(2x-1+3,5)
(3/2)^(2x-1)=8*sqrt(2)
2x-1=log(3/2) (2^3,5)
2x-1=3,5*log(3/2)(2)
x=0,5+1,75**log(3/2)(2)
Можно написать поизящней, но логарифм останется.
б)
3^x=a 2^x=b
9*a^2-30ab+8*b^2=0
9*a^2-30ab+25*b^2=17b^2
(3a-5b)^2=17b^2
1) 3a-5b=sqrt(17)b
3(a/b)=5+sqrt(17)
(a/b)=(5/3)+sqrt(17)/3
(1,5)^x=(5/3)+sqrt(17)/3
x1=log(1,5)((5/3)+sqrt(17)/3)
2) 3a-5b=-sqrt(17)b
(a/b)=(5/3)-sqrt(17)/3
x2=log(1,5)((5/3)-sqrt(17)/3)
Оба решения годятся, т.к 5 больше корня из 17
Решения не красивые, но, кажется, такие числа.