Пусть х(га)-вспахал второй тракторист, тогда 1,2х(га) вспахал первый. Составляем уравнение:
х+1,2х=12,32
2,2х=12,32
х=12,32/2,2
х=5,6(га)второй
5,6х1,2=6,72(га)первый
Дана функция y = х³- 9x.
1) Область определения х ∈ (-∞, +∞).
2) Разложим её на множители: у = х(х - 3)(х + 3).
Отсюда получаем 3 точки пересечения оси Ох:
х1 = 0, х2 = 3, х3 = -3.
3) Точка пересечения оси Оу: х = 0.
4) Поведение на бесконечности.
У(-∞) = -∞
У(+∞) = +∞
5) Исследование на четность.
Y(-х) = - х³ + 9х = -(х³ - 9х).
Функция нечетная.
6) Монотонность.
Производная функции
Y' = 3x²- 9 = 3(х² - 3).
Точки экстремумов
х1 = √3 х2 = -√3.
Находим знаки производной на полученных промежутках.
х = -2 -√3 0 √3 2
y' = 3 0 -9 0 3.
В точке х = -√3 максимум, у = 6√3,
в точке х = √3 минимум, у = -6√3.
Возрастает на промежутках (-∞, -√3) ∪ (√3, +∞)
Убывает на промежутке (-√3, √3).
7) Точки перегиба - нули второй производной.
Y" = 6x = 0
Х= 0. Это точка перегиба.
Выпуклая: х ∈ (-∞; 0]
Вогнутая: х ∈ (0; +∞).
Пошаговое объяснение:
Пошаговое объяснение:
Уравнение окружности имеет вид:
, где (a; b) - центр окружности, r - ее радиус
а)
Подставляем координаты точек в уравнение:
Правые части равны, значит равны и левые части. Приравниваем левые части первого и второго уравнений:
Приравниваем левые части второго и третьего уравнений:
Подставляем вместо а полученное ранее выражение:
Искомое уравнение окружности:
б)
Подставляем координаты точек в уравнение:
Приравниваем левые части первого и второго уравнений:
Приравниваем левые части второго и третьего уравнений:
Подставляем вместо а полученное ранее выражение:
Искомое уравнение окружности:
Подробнее - на -
1 тракторист - х. 2 тракторист - 1,2+х.
1) х+(1,2+х)=12,32
х+1,2+х=12,32
2,2х=12,32
х=12,32:2,2
х=5,6 (га)
2) 1,2+5,6=6,7 (га)