Полная поверхность шара радиусом R = 10 см равна S(ш) = 4Pi*R^2 = 4Pi*10^2 = 400Pi кв. см.При высверливании отверстия радиусом r = 6 см получаем: пропадают 2 шаровых сегмента высотой h = 2 см и добавляется внутренняя боковая поверхность цилиндра радиусом r = 6 см и высотой H = 16 см.Если ты нарисуешь шар с вырезанным цилиндром, то поймешь, что радиус цилиндра, половина его высоты и радиус шара составляют прямоугольный треугольник с катетом 6 см и гипотенузой 10 см.По т. Пифагора второй катет, то есть половина высоты цилиндра, равен 8 см. Значит, сегмент имеет высоту 2 см.Площадь шарового сегмента равна S(сег) = 2Pi*R*h = 2Pi*10*2 = 40Pi кв.см.Площадь боковой поверхности внутреннего цилиндраS(ц) = 2Pi*r*H = 2Pi*6*16 = 192Pi кв.см.Полная площадь поверхности равнаS = S(ш) - 2S(сег) + S(ц) = 400Pi - 80Pi + 192Pi = 512Pi кв.см.
8 : 7 = 1 (ост. 1) проверка: 1 * 7 + 1 = 8
8 : 6 = 1 (ост. 2) ⇒ 1 * 6 + 2 = 8
5 : 8 = 0 (ост. 5) ⇒ 0 * 8 + 5 = 5
50 : 9 = 5 (ост. 5) ⇒ 5 * 9 + 5 = 50
40 : 9 = 4 (ост. 4) ⇒ 4 * 9 + 4 = 40
30 : 9 = 3 (ост. 3) ⇒ 3 * 9 + 3 = 30
61 : 7 = 8 (ост. 5) ⇒ 8 * 7 + 5 = 61
84 : 9 = 9 (ост. 3) ⇒ 9 * 9 + 3 = 84
70 : 8 = 8 (ост. 6) ⇒ 8 * 8 + 6 = 70
48 : 20 = 2 (ост. 8) ⇒ 2 * 20 + 8 = 48
56 : 10 = 5 (ост. 6) ⇒ 5 * 10 + 6 = 56
32 : 20 = 1 (ост. 12) ⇒ 1 * 20 + 12 = 32
14 : 30 = 0 (ост. 14) ⇒ 0 * 30 + 14 = 14
8 : 10 = 0 (ост. 8) ⇒ 0 * 10 + 8 = 8
9 : 12 = 0 (ост. 9) ⇒ 0 * 12 + 9 = 9