2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.
Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:
25*36=х*4х
900=4х^2
х^2=900/4
х^2=225
х=15
Находим 4х:
4*15=60 см.
Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.
3) Верный высказывания: 2 и 3.
Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.
Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.
4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.
5) Вписанными углами будут являться углы под номерами 1, 2 и 5.
6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.
Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:
Дуга BC=360-(88+92)
Дуга BC=360-180
Дуга ВС=180 градусов.
7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов.
Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.
8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.
Дуга АС равна 360- 232= 128 градусов.
Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.
9) Верна формула 1: угол АВС равен половине градусной меры дуги АС, на которую опирается.
10) Верна формула 1: при пересечении двух хорд, произведение отрезков одной хорды равно произведению отрезков другой хорды.
поклажа О ?узлов, но сравняется с М, если 1 возьмет у М;↓ поклажа М ? узлов, но будет в два раза >О, если возьмет 1 узел у О.↑ Решение.
О + 1 = М - 1 запись первого условия; М = О + 2 следует из первого условия; 2*(О - 1) = М + 1 запись второго условия; 2О - 2 = (О +2) + 1; подстановка выражения для О во второе условие; 2О - О = 2 + 2 + 1 перегруппировка выражения; О = 5 (узлов) поклажа осла; М = 5 + 2 = 7 (узлов) поклажа мула. ответ: 5 узлов тащил осел, 7 узлов тащил мул. Проверка: 5+1 = 7-1; 6=6; Решение отвечает первому условию. 7+1 = 2(5 -1); 8 = 8 Отвечает второму условию.
1). 1 + 1 = 2 (узла) разница в узлах между М и О, так как для равенства у М нужно 1 отнять, а О 1 добавить; 2). 2 + 1 +1 = 4 (узла) будет разница если мул возьмет у О еще один узел, а у того станет на 1 узел меньше; 3). 4 * 2 = 8 (узлов) будет поклажа М с одним "лишним" узлом, взятым у О, так как при этом по условию М будет тащить в два раза больше О. Т.е. разница в 4 узла будет составлять половину его поклажи. 4). 8 - 1 = 7 (узлов) первоначальная поклажа М; 5). 7 - 2 = 5 (узлов) первоначальная поклажа О. ответ: Мул тащит 7 узлов, Осел тащит 5 узлов. Проверка: 5+1 = 7-1; 6=6; 7+1 = 2(5-1); 8 = 8.
1) Установить соответствие:
Угол ABC опирается на дугу ADC
Угол DEF опирается на дугу DCF
Угол AGF опирается на дугу ACF
2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.
Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:
25*36=х*4х
900=4х^2
х^2=900/4
х^2=225
х=15
Находим 4х:
4*15=60 см.
Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.
3) Верный высказывания: 2 и 3.
Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.
Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.
4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.
5) Вписанными углами будут являться углы под номерами 1, 2 и 5.
6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.
Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:
Дуга BC=360-(88+92)
Дуга BC=360-180
Дуга ВС=180 градусов.
7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов.
Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.
8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.
Дуга АС равна 360- 232= 128 градусов.
Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.
9) Верна формула 1: угол АВС равен половине градусной меры дуги АС, на которую опирается.
10) Верна формула 1: при пересечении двух хорд, произведение отрезков одной хорды равно произведению отрезков другой хорды.
Подробнее - на -
Пошаговое объяснение: