У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14 ответ:14
Dа = 18 ми Dв-? 1) Lа = пDа - длина окружности большой монетки. 2) 2•Lа - длина пути, проделанной меткой на большой монетке, совершившей 2 оборота. 3) Lв = пDв Меньшая монетка должна для того, чтобы метки совпали, совершить также полное число оборотов. То есть число оборотов должно быть натуральным числом к, причем к>2, 2•Lа = к•Lв 2пDа = кпDв Число п в обеих частях уравнения можно сократить. 2Dа = кDв Dв = 2Dа/к Рассмотрим случаи, когда количество оборотов малой монетки к= 3; 4; 5: Dв1 = 2•18/3 = 12 мм - первый возможный диаметр монетки в. Dв2 = 2•18/4 = 9 мм - второй возможный диаметр монетки в. Dв3 = 2•18/5 = 7,2 мм - третий возможный диаметр монетки в. Но такой диаметр монетки вряд ли возможен. ответ: 12 мм или 9 мм.
или
84889
: