Находим проекции высот боковых граней на основание.
Пусть точка О - точка пересечения диагоналей основания АВСД. Она же - основание высоты SO пирамиды.
Из точки О проведём перпендикуляры ОК и ОР к сторонам АД и АВ, являющиеся проекциями высот боковых граней на основание.
По Пифагору треугольник АВД прямоугольный со сторонами 3, 4 и 5 м.
Высота из О к АД равна половине высоты к этой же стороне из точки В.
Тогда по свойству высоты из прямого угла ОК = (1/2)*(3*4/5) = 12/10 = (6/5) = 1,2 м.
Находим длину АО: АО = √(4² +(3/2)²) = √73/2 м.
Тогда ОР = (4*1,5)/(√73/2) = 12/√73 м.
Теперь по Пифагору находим высоты боковых граней.
SK = √(2² + (6/5)²) = √(4 + (36/25) = 2√34/5 м.
SP = √(2² + (12/√73)²) = √(4 + (144/73)) = √(436/73) = 2√109/√73 м.
Площадь основания So = 5*(2*1,2) = 12 м².
Площадь боковой поверхности равна:
Sбок = 2*(1/2)*5*(2√34/5) + 2*(1/2)*4*(2√109/√73) = 2√34 + (8√109/√73) м².
Площадь полной поверхности пирамиды равна:
S = So + Sбок = 12 + (2√34) + (8√109/√73) м².
ЕР=ОЕ+ОР=ВН.
Так как в трапецию можно вписать окружность, то выполняется равенство:
АВ+СD=AD+BC
Периметр равен:
P=AB+CD+AD+BC=40, значит
2АВ=20, АВ=10 (трапеция равнобедренная)
AD+BC=20
S=(AD+BC)/2*ЕР, отсюда
ЕР=2S/(AD+BC)= 2*80/20=8 => ВН=8.
Высота ВН делит основание ВD на два отрезка
АН=(AD-BC)/2 и HD=(AD+BC)/2 (свойство равнобедренной трапеции).
2АН=AD-BC.
Из теоремы Пифагора АН=√(АВ²-ВН²)=√(10²-8²)=6.
Итак,
AD+BC=20
AD-BC=12, значит
AD=16, ВС=4.
Треугольики ВОС и АОD подобны по двум углам (даже по трем!),так как <CAD=<ACB и <BDA=<DBC - внутренние накрест лежащие углы
при параллельных ВС и AD и секущих АС и ВD соответственно.
Коэффициент подобия этих треугольников равен k=ВС/AD=1/4.
Тогда ОЕ/ОР=1/4 (высоты подобных треугольников).
ОР=4*ОЕ. ОЕ+ОР=8. 5*ОЕ=8.
ОЕ=8/5=1,6.
ответ: искомое расстояние равно 1,6.