Содержание урока Задание №2 Если a < b, то a + 4 > b + 4 a – 7 > b – 7 a + 4 < b + 4 a – 7 > b – 7 a + 4 < b + 4 a – 7 < b – 7 a + 4 < b + 4 a – 7 > b – 7
Но Электроник проявлял любознательность к новому миру, и нам пришлось учить его заново. Те же самые дома, автомобили, животные, которых он видел на рисунках, из плоских обратились в объемные. Мальчик видел цветы, траву, деревья, и я стремился дать ему представление о непрерывности процессов на Земле. Он замечал, как похожи и не похожи друг на друга дома, улицы, скверы, как день ото дня меняется или повторяется погода. Словом, я хотел, чтобы он, как и все мы, люди, привык к характерным условиям жизни и разнообразию мира… Не мне судить, как это удалось. Я считал, что он вежливый, спокойный, правдивый, и не ожидал от него таких трюков. Потом еще это странное имя — Сергей Сыроежкин
Докажем утверждение индукцией по числу n учеников в классе. Для n = 3 утверждение очевидно. Предположим, что оно верно при n ≤ N. Пусть n = N + 1. Утверждение верно, если в классе ровно один молчун. Пусть их не менее двух. Выделим молчуна A и его друзей — болтунов B1, … ,Bk. Для оставшихся n – 1 – k учеников утверждение верно, т.е. можно выделить группу M, в которой каждый болтун дружит с нечётным числом молчунов и в M входит не менее учеников. Предположим, что болтуны B1, … ,Bm дружат с нечётным числом молчунов из M, а Bm + 1, … ,Bk — с чётным числом. Тогда, если , то добавим к группе M болтунов B1, … ,Bm, а если , то добавим к группе M болтунов Bm + 1, … ,Bk и молчуна A. В обоих случаях мы получим группу учеников, удовлетворяющую условию задачи.