1. Что называется объемом понятия? Приведите пример трех объектов, принадлежащих объему понятия "треугольник" и трех объектов, не принадлежащих объему данного понятия. 2. Назовите понятие, которое является родовым по отношению к данным: подосиновики, опята, сыроежки. 3. Что называется определением понятия? 4. Какие виды определений понятий чаще всего применяются при формировании у дошкольников начальных математических представлений? Приведите пример. 5. Проведите логический анализ определения понятия: "Значение переменной, при котором уравнение превращается в верное равенство, называется корнем уравнения". 6. А - множество букв в слове "грамматика"; В - множество букв в слове "математика". Найти: АВ, АВ, А\В, АхВ. 7. Правильна ли классификация: Множество многоугольников разбивается на подмножества правильных четырехугольников, шестиугольников и квадратов. 8. Придумайте задание для дошкольников на разбиение множества на классы. 9. Даны множества: А= {2, 4, 6, 8, 10} и В= {1, 3, 5, 7}, элементы которых находятся в соответствии R: «число а меньше числа в», причем аА, вВ. Постройте граф соответствия R, перечислите все пары чисел, находящиеся в соответствии R. 10. Приведите пример задания для дошкольников, выполняя которое они устанавливают соответствие между двумя множествами. 11. На множестве Х={1, 2, 3, 4, 5, 6, 7, 8, 9} задано отношение R: «быть больше на 2». Постройте граф отношения R. Является ли данное отношение отношением порядка? ответ обосновать. 12. Придумайте задание для дошкольников на упорядочение множеств
Вычисляем определитель матрицы 3×3:
∆ =
5 3 3
2 6 -3
8 -3 2
= 5·6·2 + 3·(-3)·8 + 3·2·(-3) - 3·6·8 - 5·(-3)·(-3) - 3·2·2 = 60 - 72 - 18 - 144 - 45 - 12 = -231.
Находим определители:
∆1 =
48 3 3
18 6 -3
21 -3 2
= 48·6·2 + 3·(-3)·21 + 3·18·(-3) - 3·6·21 - 48·(-3)·(-3) - 3·18·2 = 576 - 189 - 162 -
- 378 - 432 - 108 = -693.
∆2 =
5 48 3
2 18 -3
8 21 2
= 5·18·2 + 48·(-3)·8 + 3·2·21 - 3·18·8 - 5·(-3)·21 - 48·2·2 = 180 - 1152 + 126 - 432 + 315 - 192 = -1155.
∆3 =
5 3 48
2 6 18
8 -3 21
= 5·6·21 + 3·18·8 + 48·2·(-3) - 48·6·8 - 5·18·(-3) - 3·2·21 = 630 + 432 - 288 - 2304 + 270 - 126 = -1386.
x = ∆1 / ∆ = -693 / -231 = 3.
y = ∆2 / ∆ = -1155 / -231 = 5.
z = ∆3 / ∆ = -1386 / -231 = 6.