1. Чтобы число делилось на 3, в сумме его цифры должны быть равны числу, которое делится на 3. 7+6+3=16, 7+6+3+2=18 делится на 3. Следовательно, добавляем 2, получается 7632. 2. Чтобы число делилось на 6, в сумме его цифры должны быть равны числу, которое делится и на 2, и на 3. 7+6+3=16, 7+6+3+2=18 делится и на 2, и на 3. Следовательно, добавляем 2, получается 7632. 3. Чтобы число делилось на 19, его десятки, сложенные с удвоенным числом единиц, делится на 19. 763*, сумма десятков=763, а теперь надо вместо * взять число и умножить его на 2, чтобы в сумме они делились на 19. Например, возьмем число 8, 2*8=16. Тогда, 763+16=779, делится на 19. Следовательно, 7638.
а) Обратимся к следствию из основного тригонометрического множества: cos^2(a) = 1 - sin^2(a), тогда cos(a) = +- √(1 - sin^2(a)). Получим:
cos(a) = +- √(1 - sin^2(a)) = +- √(1 - (0,8)^2) = +- 0,6.
Поскольку a принадлежит второму квадранту косинус отрицательный:
cos(a) = -0,6.
б) Воспользуемся формулой двойного аргумента для синуса:
sin(2a) = 2sin(a)cos(a) = 2 * 0,8 * (-0,6) = -0,96.
в) Формула для косинуса:
cos(2a) = cos^2(a) - sin^2(a).
cos(2a) = (-0,6)^2 - (-0,8)^2 = 0,36 - 0,64 = -0,28.
Пошаговое объяснение: