Решения 2, первое примитивное, второе сложное. Примитивное для 11 класса. Значит ты должен вначале понять, что в условии не сказано, смотрим ли мы в корзину или нет. Если мы смотрим в корзину то решение простое, и легкое: Так как мы смотрим в корзину, то мы видим яблоки красные и зеленые, понятно что наименьшее количество яблок с 3 одинаковыми цветами равно 3. Первый ответ 3. Второй - 4 Третий - 5 Алгоритм прост, мы смотрим в корзину и берем нужные нам яблоки, запишем это математически: Наименьшее Количество яблок одного цвета = количество цветов + (количество нужных яблок - количество цветов). Можно это записать вот так: Представим что есть неизвестные: X= Количество яблок одного цвета, Y=количество нужных яблок. То получаем уравнение: Второе решение (когда мы не смотрим в корзину)я записывать не буду, так как сам не разбираюсь в теории вероятности. И решение там не легкое даже для ВУЗов.
Вот они: 1 группа Рассмотрим отличающиеся только на 1 Все рядом расположенные числа:(50 и 51, 51 и 52, 52 и 53, ..., 148 и 149, 149 и 150) их 100 штук(пар)
2 группа Рассмотрим отличающиеся на 2 Их, будет меньше вдвое, так как нечетные входят Например, 50 и 52, 52 и 54, 54 и 56(и далее, последние: 146 и 148, 148 и 150) - не входят, так как всегда имеется общий делитель, равный 2, 51 и 53, 53 и 55, 55 и 57(и далее, последние: 145 и 147, 147 и 149) - входят, так как у них нету и не может быть общего делителя. их 100/4= 25 штук(пар)
Рассмотрим отличающиеся на 3 Можно показать, что они встречаются сколько раз наглядным примером: 50 и 53 52 и 55 53 и 56 55 и 58 56 и 59 далее последние: 145 и 148 146 и 149
То есть, всего пар отличающихся на 3 равно 100 пар, у которых общий делитель будет равен 3 равно 100/3=33(с лишним) То есть таких взаимно простых пар будет 100-33=67 штук(пар)
8:2=4