М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Hasky12
Hasky12
26.05.2020 02:26 •  Математика

Бригада строителей изготавливает бетон двух видов (Бетон 1 и Бетон 2) Для изготовления взяты компоненты , запасы которых ограничены и равны: воды 240 ед. песка 432 ед. цемента 288 ед. прибыль за каждый вид бетона одинакова и равна 25 ед. Найти оптимальный план выпуска бетона(кол-во продукции, максимальную прибыль и остатки сырья) если известны нормы расхода: на изготовления единицы Бетона 1 необходимо 4 ед водя. 4 ед песка. 3 ед цемента. Изготовление единицы Бетона 2 требует 2 ед воды. 6 ед песка. 2 ед цемента

👇
Открыть все ответы
Ответ:
Раскладываем составные числа на простые множители.
4=2•2; 6=2•3; 8=2•2•2; 9=3•3; 10=2•5;

Заменяем вместо составных пишем то, что разложили. 1,2,3,4,5,6,7,8,9,10.
Получили
1,2,3,(2•2),5,(2•3),7,(2•2•2),(3•3),(5•2);

Всего 8 двоек; 4 тройки; 2 пятерки; 1 единица и 1 семерка. Единица при умножении не изменит произведение, 7 изменит, поэтому стираем 7. Остальные числа пополам делим, 8:2=4двойки и 4:2=3тройки; 2:2=1 по пятерке; смотрим где разделить;

7 стёрли; осталось;
1,2,3,(2•2), 5,(2•3),(2•2•2),(3•3),(5•2);

1•2•3•(2•2)•5•(2•3)=(2•2•2)•(3•3)•(5•2);

1•2•3•4•5•6=8•9•10

720=720;

ответ: нужно стереть одно число 7.
4,4(9 оценок)
Ответ:
138

Нам дано уравнение 6 x + 10 y + 15 z = 23 6 x + 10 y + 15 z = 23 6x + 10y + 15z = 23 и мы хотим найти все целочисленные решения x, y, zx, y, zx, y , z. Уравнение называется линейным, поскольку все неизвестные x, y, z x, y, z x, y, z появляются с показателями, равными 1 1 1. Кроме того, оно называется диофантовым уравнением, потому что мы ищем целочисленные решения.

Уравнение выглядит знакомым? Вы можете распознать его как уравнение плоскости в 3 3 3 -пространстве R 3 R 3 \ R ^ 3. Если наше диофантово уравнение имеет целочисленные решения x, y, zx, y, zx, y, z, они будут жить (найдены) на этой плоскости и обозначаться через 3 3 3 -кортеж (x, y, z) (x, y z) (x, y, z).

Теперь мы рассмотрим возможные решения. Чтобы это решение было понятным как можно большему количеству людей, некоторые тайные концепции и операции модульной арифметики не должны использоваться явно, поэтому , имейте в виду.

6 x + 10 y + 15 z = 23 (1) (1) 6 x + 10 y + 15 z = 23 6 x + 10y + 15z = 23 \ tag {1}

1 x + 5 x + 5 (2 года + 3 z) = 5 (4) + 3 1 x + 5 x + 5 (2 года + 3 z) = 5 (4) + 3 1x + 5x + 5 (2 года +) 3z) = 5 (4) + 3 после перегруппировки, кратной 5 5 5,

x = 5 (4 - x - 2 y - 3 z) + 3 = 5 k + 3 x = 5 (4 - x - 2 y - 3 z) + 3 = 5 k + 3 x = 5 (4 -x - 2y - 3z) + 3 = 5k + 3 с k ∈ Z k ∈ Z k \ in \ Z

Делая то же самое, чтобы получить y y y,

6 х + 10 лет + 15 z = 23 6 х + 10 лет + 15 z = 23 6x + 10 лет + 15z = 23

3 (2 x + 5 z) + 3 (3 года) + 1 y = 3 (7) + 2 3 (2 x + 5 z) + 3 (3 года) + 1 y = 3 (7) + 2 3 ( 2x + 5z) + 3 (3y) + 1y = 3 (7) + 2 после перегруппировки, кратной 3 3 3,

y = 3 (7 - 2 x - 3 y - 5 z) + 2 = 3 м + 2 y = 3 (7 - 2 x - 3 y - 5 z) + 2 = 3 m + 2 y = 3 (7 - 2x - 3y -5z) + 2 = 3m + 2 с m ∈ Z m ∈ Z m \ in \ Z

Наконец, чтобы получить z z z,

6 х + 10 лет + 15 z = 23 6 х + 10 лет + 15 z = 23 6x + 10 лет + 15z = 23

2 (3 x + 5 лет) + 2 (7 z) + 1 z = 2 (11) + 1 2 (3 x + 5 лет) + 2 (7 z) + 1 z = 2 (11) + 1 2 ( 3x + 5y) + 2 (7z) + 1z = 2 (11) + 1 после перегруппировки, кратной 2 2 2,

z = 2 (11 - 3 x - 5 лет - 7 z) + 1 z = 2 (11 - 3 x - 5 лет - 7 z) + 1 z = 2 (11 - 3x - 5y -7z) ​​+ 1

z = 2 n + 1 z = 2 n + 1 z = 2n + 1 с n ∈ Z n ∈ Z n \ in \ Z

Итак, пока мы определили,

x = 5 k + 3, y = 3 m + 2, z = 2 n + 1, k, m, n ∈ Z x = 5 k + 3, y = 3 m + 2, z = 2 n + 1, ∀ k, m, n ∈ Z x = 5k + 3, y = 3m + 2, z = 2n + 1, \ forall k, m, n \ in \ Z \ tag * {}

Нам все еще нужно определить отношения между k, m k, m k, m, & n n n, целыми числами. Для этого подставим выражения для x, y, zx, y, zx, y, z в 6 x + 10 y + 15 z = 23 6 x + 10 y + 15 z = 23 6x + 10y + 15z = 23 ,

6 (5 k + 3) + 10 (3 m + 2) + 15 (2 n + 1) = 23 6 (5 k + 3) + 10 (3 m + 2) + 15 (2 n + 1) = 23 6 (5к +3) + 10 (3м + 2) + 15 (2н + 1) = 23

30 (k + m + n) + 53 = 23 30 (k + m + n) + 53 = 23 30 (k + m + n) + 53 = 23

30 (k + m + n) = - 30 30 (k + m + n) = - 30 30 (k + m + n) = -30

k + m + n = - 1 k + m + n = - 1 k + m + n = -1 или k = - (1 + m + n) k = - (1 + m + n) k = - (1 + м + н)

Следовательно,

x = - 2 - 5 м - 5 n x = - 2 - 5 м - 5 n x = -2 - 5 м - 5n \ tag * {}

у = 2 + 3 м у = 2 + 3 м у = 2 + 3 м \ tag * {}

z = 1 + 2 n z = 1 + 2 n z = 1 + 2n \ tag * {}

(x, y, z) = (- 2, 2, 1) + m (- 5, 3, 0) + n (- 5, 0, 2) (x, y, z) = (- 2, 2, 1) + m (- 5, 3, 0) + n (- 5, 0, 2) (x, y, z) = (-2, 2, 1) + m (-5, 3, 0) + n (-5, 0, 2) где m, nm, nm, n - произвольные целые числа. Целочисленные решения - это бесконечное подмножество точек на бесконечной плоскости 6 x + 10 y + 15 z = 23 6 x + 10 y + 15 z = 23 6x + 10y + 15z = 23, изображенных ниже.

ответил(а) 10 месяцев, 1 неделя назад
Bernard Blander
добавить комментарий

52
6x + 10 y + 15 z = 23

L.C.M. из 6,10 и 15 это 30.

Сначала мы должны получить пробным путем один набор x, y, z, чтобы удовлетворить уравнению. Это может быть достигнуто с x = 3, y = -1 и z = 1

Теперь мы можем добавить пакеты от 30, скажем, от L до 6x, от M до 10 y и от -L-M до 15 z, так что их общее число равно 0.
4,4(18 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ