Підприємець розпочав невеликий бізнес з деякої суми грошей. В перший місяць він витратив 10 доларів а до суми що залишалась додав 3 її частину. У наступному місяці він знову витратив сто доларів і витратив суму що залишилася на третину. У третьому місяці він знову витратив сто доларів. Який був початковий капітал підпріємця
a) D=
б) Наименьшая грань образована меньшими ребрами:
в) Наибольшая грань образована большими ребрами: 3*6=18 - Её площадь.
г) Наименьшая грань образована меньшими ребрами: 2*3=6 - Её площадь.
д) Площадь поверхности - сумма площадей граней: (2*3+2*6+3*6) * 2 = (6+12+18)*2=36*2=72.
2. d-диагональ призмы, a - угол между d и основанием.
а) Высота призмы равна проекции её диагонали на боковое ребро: h=d*sin(a)
б) Диагональ основания призмы равна проекции её диагонали на основание: f=d*cos(a)
в) Поскольку основанием призмы является правильный шестиугольник, все углы равны 120 градусам. Если провести диагональ f, она разделит углы пополам, то есть по 60 градусов. Если провести 3 таких диагонали, получим 6 равносторонних треугольников со стороной равной длине ребра и f будет равна удвоенной стороне основания, т.е. g=f/2
г) Поскольку основанием призмы является правильный шестиугольник, его площадь будет равна
д) Наибольшее диагональное сечение призмы будет опираться на большую диагональ основания f. Поскольку призма является правильной, сечение будет иметь форму прямоугольника. Её площадь вычисляется по формуле: f*h=dsin(a)*dcos(a)=d^2*sin(2a)/2
е) Площадь боковой поверхности правильной призмы равна периметру основания на высоту: 6*g*h = 6f/2*dsin(a)=dsin(a)*dcos(a)/2=3d^2*sin(2a)/2.
3.
а) Большая диагональ параллелепипеда образует с диагональю основания и высотой прямоугольный треугольник. Диагональ параллелепипеда является в этом треугольнике гипотенузой.
б) Аналогично, меньшая диагональ основания будет равна
в) Поскольку в основании лежит ромб, его диагонали пересекаются под прямым углом и в точке пересечения делятся пополам. Сторона основания параллелепипеда в этом треугольнике является гипотенузой.
г) Поскольку основание является ромбом, площадь его основания равна половине произведения диагоналей: 6*15/2=45
д) Площадь боковой поверхности равна произведению периметра основания на высоту: 17*4*8=544.
е) Большая диагональ параллелепипеда образует прямоугольник со сторонами 8,15,17. Нужно найти угол между диагональю параллелепипеда и основанием, то есть сторонами треугольника равными 15 и 17. В прямоугольном треугольнике косинус угла равен отношению прилежащего катета к гипотенузе.
cos(a)=15/17.
a=28 градусов.
4.
а) Поскольку в основании призмы лежит прямоугольный треугольник, и нам известны два его катета, гипотенуза будет равна
б) Поскольку в основании призмы лежит прямоугольный треугольник, площадь призмы будет равна площади прямоугольного треугольника, то есть половине произведения катетов: 12*5/2=30.
в) Площадь боковой поверхности призмы равна произведению периметра основания на высоту: (5+12+13)*10=300.
г) Площадь полной поверхности призмы равна сумме площади боковой поверхности и двух площадей основания: 300+2*30=360.
д) Сечение, проведенное через боковое ребро и середину гипотенузы, будет опираться на медиану основания, проведенную к гипотенузе.
Рассмотрим треугольник, сторонами которого является меньший катет основания, медиана и половина гипотенузы. 2 стороны равны 5 и 6.5.
Для нахождения 3 стороны воспользуемся формулой
Косинус угла a равен 5\13
Подставим:
Площадь сечения будет равна 6.5*10=65.
е) Наибольшая боковая грань призмы опирается на гипотенузу прямоугольного треугольника, лежащего основания. Её диагональ равна