Площадь поверхности прямоугольного параллелепипеда со сторонами a, b, c равна 2(ab + bc + ac) Объем равен abc Требуется найти два прямоугольных параллелепипеда с равными площадями поверхности, но разными объемами.
Попробуем найти такие два параллелепипеда. Пусть стороны первого параллелепипеда a₁ = 3, b₁ = 3, c₁ = 3 (таким образом, это куб со стороной 3). Второй параллелепипед выберем со сторонами a₂ = 1, b₂ = 1 и некой неизвестной c₂, которую мы найдём из равенства площадей.
Объемы не равны, а значит, исходное утверждение неверно, поскольку нашелся контрпример - два прямоугольных параллелепипеда (3, 3, 3) и (1, 1, 13) с равными площадями поверхности, но неравными объемами.
Площадь поверхности = сумме площадей граней. У прямоугольного параллелепипеда со сторонами a, b, c все 6 граней - прямоугольники, 2 со сторонами a и b, 2 со сторонами b и c, 2 со сторонами a и c. Суммарная площадь поверхности 2ab + 2bc + 2ac = 2(ab + bc +ac)
Точ. А х150 y85 z40 шаг1. на оси х откладываем 150мм(ставим точку для удобства) шаг2. по оси Y отмеряем 85мм, и с этих точек проводим линии, перпендикулярные осям, в пересечении получим точ а1(на проекции 1- вид сверху). ш3. по оси Z отмеряем 40мм, и с оси X(с отмеряных ранее150), ведем линии перпендикулярные омсям и в пересечении получим точ A2(П2,вид слева).
теперь нужен циркуль(ибо с ним проще и для наглядности), чтобы откладывать точки на П3. И так, на оси Y у нас уже есть отложенных 85мм, так вот иглу циркуля ставим на ноль, а другой конец на 85(на оси У) и ведем до оси Y'(игрек штрих). мы получили отметку на У' теперь с осей Z и Y' (по оси Z у нас 40, по оси Z' отметка проведенная циркулем), проводим перпендикулярные линии осям (Z,Y') и в пересечении получим точ. A3
/id208681696 если надо, есть фото с последовательными действиями
Объем равен abc
Требуется найти два прямоугольных параллелепипеда с равными площадями поверхности, но разными объемами.
Попробуем найти такие два параллелепипеда. Пусть стороны первого параллелепипеда a₁ = 3, b₁ = 3, c₁ = 3 (таким образом, это куб со стороной 3). Второй параллелепипед выберем со сторонами a₂ = 1, b₂ = 1 и некой неизвестной c₂, которую мы найдём из равенства площадей.
2(a₁*b₁ + b₁*c₁ + a₁*c₁) = 2(a₂*b₂ + b₂*c₂ + a₂*c₂)
3*3 + 3*3 + 3*3 = 1*1 + 1*c₂ + 1*c₂
27 = 2c₂ + 1
c₂ = 13
Итак, площади поверхностей у параллелепипеда со сторонами 1, 1, 13 и куба со стороной 3 равны. Проверим, равны ли объемы.
V₁ = a₁ * b₁ * c₁ = 3³ = 27
V₂ = a₂ * b₂ * c₂ = 1 * 1 * 13 = 13 ≠ V₁
Объемы не равны, а значит, исходное утверждение неверно, поскольку нашелся контрпример - два прямоугольных параллелепипеда (3, 3, 3) и (1, 1, 13) с равными площадями поверхности, но неравными объемами.
Площадь поверхности = сумме площадей граней. У прямоугольного параллелепипеда со сторонами a, b, c все 6 граней - прямоугольники, 2 со сторонами a и b, 2 со сторонами b и c, 2 со сторонами a и c.
Суммарная площадь поверхности 2ab + 2bc + 2ac = 2(ab + bc +ac)