Пошаговое объяснение:
0 ; 1 ; 2 ... 2018 - возможные остатки от деления числа на 2019
( всего 2019 ) , пусть множество А состоит из различных чисел
вида 777...7 и количество элементов этого множества
больше чем 2019 , тогда найдутся 2 числа из А ,имеющие
одинаковые остатки при делении на 2019 , пусть это числа а
и b ; а > b ;a = 2019·n+r ; b = 2019·m+r , тогда а - b = 2019· t =
777...77...000...0 = 777...7 · ( количество цифр у
разности будет равно числу цифр числа а , причем число
нулей будет равно числу семерок у числа b ) , a - b кратно
2019 и равно произведению числа вида 777...7 и
, но числа 2019 и
взаимно простые ( нет общих делителей ) ⇒ 777...7 делится
нацело на 2019
АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
1) 20×5=100 (м) плёнки купили.
2) 16×4=64 (м) на теплицу 16метров.
3) 25×4=100 (м) на теплицу 25 метров.
На всё хватит.
УДАЧИ!;)