а) -55, В) 11, 6) -41
Пошаговое объяснение:
Відповідь:
у=2х² + 4х - 6.
Покрокове пояснення:
це парабола - загальне рівняння параболи:
ах²+bх+c=0
знайдемо с, то точка , де парабола перетинається з віссю ординат (0;-6)
с= - 6
вітки параболи направлені вгору , це означає , що а> 0 ;
парабола звужена на 1 одиницю вдвічі, це означає, що a=2
По координатам вершини (-1,8) запишемо рівняння до загального рівняння у= 2( х--х0)²-у0, де (х0;у0) координати вершини
у=2(х-(-1))²-8
у=2(х+1)²-8
у=2(х²+2х+1) -8
у=2х² + 4х- +2-8
у=2х² + 4х - 6.
Перевіремо, чи токи перетину графіку з асцисами є коренями рівняння: (-3;0) та (1;0)
у(-3)=2*9-12-6=0
у(1)=2*1+4-6=0
Рівняння записано вірно у=2х² + 4х - 6.
Відповідь:
у=2х² + 4х - 6.
Покрокове пояснення:
це парабола - загальне рівняння параболи:
ах²+bх+c=0
знайдемо с, то точка , де парабола перетинається з віссю ординат (0;-6)
с= - 6
вітки параболи направлені вгору , це означає , що а> 0 ;
парабола звужена на 1 одиницю вдвічі, це означає, що a=2
По координатам вершини (-1,8) запишемо рівняння до загального рівняння у= 2( х--х0)²-у0, де (х0;у0) координати вершини
у=2(х-(-1))²-8
у=2(х+1)²-8
у=2(х²+2х+1) -8
у=2х² + 4х- +2-8
у=2х² + 4х - 6.
Перевіремо, чи токи перетину графіку з асцисами є коренями рівняння: (-3;0) та (1;0)
у(-3)=2*9-12-6=0
у(1)=2*1+4-6=0
Рівняння записано вірно у=2х² + 4х - 6.
Пошаговое объяснение:
а) -12 - (15 + х) = 28
-12 - 15 - х = 28
- х = 28 + 12 + 15
-х = 55 | ×(-1)
х = -55
в) -(4 -х) + 15 = 12
- 4 + х + 15 = 12
х = 12 + 4 - 15
х = 1
6) (х + 9) - 18 = - 50
х + 9 - 18 = - 50
х = - 50 - 9 + 18
х = - 41