Из первой урны с вероятностью 4/10 вытаскивают белый шар, а с вероятностью 6/10 - черный. Если достали белый, то из второй с вероятностью 5/11 - достается белый и с вероятностью 6/11 - черный, иначе - наоборот. Аналогичная ситуация с третьей урной.
Имеем следующие варианты: белый - белый - белый белый - черный - белый черный - белый - белый черный - черный - белый
Вероятность вытащить белый шар будет равна сумме вероятностей этих вариантов. Найдем каждый из них. В том же порядке получаем: (4/10) * (5/11) * (5/11) (4/10) * (6/11) * (4/11) (6/10) * (4/11) * (5/11) (6/10) * (7/11) * (4/11)
Суммируя все эти вероятности и упрощая, получаем 484/1210 = 0.4 или 40 процентов, т.е. тот же результат, как если бы шар извлекался сразу из третьей корзины. Значит, результат можно получить почти ничего не вычисляя, а просто подумав, но с объяснением этого, я, увы не готов
1) Составим уравнение плоскости (ABC). Оно имеет вид: ax+by+cz+d=0 Плоскость проходит через три точки A, B, C, поэтому справедливо следующее: Для A(4;3;0): 4a+3b+d=0 Для B(3;5;-1): 3a+5b-c+d=0 Для C(1;3;3): a+3b+3c+d=0 Получили систему из трех линейных уравнений с четырьмя неизвестными. Сразу же примем a=1, чтобы система решилась однозначно. (1) 3b+d=-4 (2) 5b-c+d=-3 (3) 3b+3c+d=-1 Умножим второе уравнение на 3 и прибавим к третьему, получим: 18b+4d=-10 или 9b+2d=-5 (4) Умножим первое уравнение на -2 и сложим с (4). -6b+9b-4d+4d=8-5 3b=3, b=1 Далее из (1) выразим d: d = -4-3b=-7 Далее из (2) выразим c: c = 5b+d+3=5-7+3=1. Таким образом, уравнение плоскости имеет вид: x+y+z-7=0. Теперь можно найти расстояние от точки D(5;3;1) до плоскости (ABC): ρ(D, (ABC))=|1*5+1*3+1*1-7|/sqrt(1^2+1^2+1^2)=2/sqrt(3)=2*sqrt(3)/3.
Пусть два последовательные четные числа равны
и 
По условию, НОК
. Тогда НОД
.
Затем НОК чисел a и b можно найти, используя следующую формулу:
НОК
* НОД

В нашем случае:
НОД
и НОК
.
Решаем уравнение:
Искомые последовательные четные числа 8 и 10. Тогда сумма квадратов этих чисел
ответ: 164.