Привести к простейшему виду уравнение x2 + 2y2 - 5x + 4y - 6 = 0. Решение.Соберем члены уравнения, содержащие одну и ту же переменную величину, и получим(x2 - 5x) + (2y2 + 4y) - 6 = 0.Из второй скобки вынесем коэффициент при y2, после чего предыдущее уравнение примет вид(x2 - 5x) + 2(y2 + 2y) - 6 = 0.В каждой из скобок выделим полный квадрат и получимилиоткуда следует, что (A)Произведем теперь такую замену: положим, чтоПроизведенная замена представляет собой не что иное, как преобразование координат всех точек плоскости параллельным переносом координатных осей без изменения их направления. Сравнение последних соотношений с формуламипоказывает, что новое начало координат находится в точке , а уравнение (A) принимает видРазделив обе части этого уравнения на , получим канонический (простейший) вид данного уравненияЗаданное уравнение определяет эллипс с полуосями , центр которого находится в первоначальной системе координат в точке . Таким образом, упрощение уравнения этой линии достигнуто параллельным переносом начала координат в ее центр.
1) Для того, чтобы изготовить занавес, театральная мастерская закупила 15 м ткани, но ее оказалось недостаточно, поэтому закупили еще какое-то кол-во ткани и сшили занавес из 18 метров ткани. Сколько метров ткани дозакупили? 18-15=3 (м) 2) Улитка решила перейти поле. Вначале она метров, после еще 9. Потом она еще какое-то расстояние. Сколько на в третий раз, если в 4 и 5 она и 10 метров. После 5 раза улитка дошла до конца поля. Причем длина поля-36 метров. 8+9+3+10+х=36 30+х=36 х=36-30 х=6 ответ: улитка в 3 раз 6 метров
Решение.Соберем члены уравнения, содержащие одну и ту же переменную величину, и получим(x2 - 5x) + (2y2 + 4y) - 6 = 0.Из второй скобки вынесем коэффициент при y2, после чего предыдущее уравнение примет вид(x2 - 5x) + 2(y2 + 2y) - 6 = 0.В каждой из скобок выделим полный квадрат и получимилиоткуда следует, что (A)Произведем теперь такую замену: положим, чтоПроизведенная замена представляет собой не что иное, как преобразование координат всех точек плоскости параллельным переносом координатных осей без изменения их направления. Сравнение последних соотношений с формуламипоказывает, что новое начало координат находится в точке , а уравнение (A) принимает видРазделив обе части этого уравнения на , получим канонический (простейший) вид данного уравненияЗаданное уравнение определяет эллипс с полуосями , центр которого находится в первоначальной системе координат в точке . Таким образом, упрощение уравнения этой линии достигнуто параллельным переносом начала координат в ее центр.