Поскольку, у Илхома было х тетрадей, а у Ботиря на восемь тетрадей больше чем у Илхома, то у Ботиря было х + 8 тетрадей. У Дилшода было на три тетради меньше, чем у Илхома, то есть у него было х - 3 тетради. Вместе у ребят было 62 тетради. Составим уравнение: х + х + 8 + х + 3 = 62, 3х + 11 = 62. Для решения уравнения перенесем в одну часть все неизвестные члены уравнения, а в другую все известные члены уравнения: 3х = 62 - 11, 3х = 51, х = 51:3, х = 17 тетрадей. ответ: у Илхома было 17 тетрадей.
ответ: 9 см.
Пошаговое объяснение:
a=BC=3√6;
b=AC;
c=AB;
∠A=45°
∠B=60°
AC=b=?
Решение
По т. синусов c/sinC=b/sinB=c/sinC.
b/sin60 = a/sin45;
AC=b=3√6*(√3/2):(√2/2) = 3√6*√3*√2/4=3*6/4=9 см.