Он опять получил двойку. Митя одет в пальто, на ногах ботинки. В руках он держит портфель, перевязанный верёвкой, из него торчат коньки. Он пришёл из школы. Лицо у него нахмуренное,глаза потупленные в пол. Мать сидит у стола, сложив руки на коленях. Она смотрит на сына с укоризной. По её лицу видно, что она огорчена. Сестра вытащила учебники и делала уроки. Она смотрит на Митю с осуждением. Одета сестра в школьную форму, на её шее повязан красный галстук, она, наверно, не получает двойки. Младший брат сидит на велосипеде и смотрит на Митю с усмешкой. Одна собака с радостью Встречает хозяина. Это видно из того, что она передними лапами упёрлась в его грудь, виляя хвостом. На картине видно, что квартира двухкомнатная. В комнате, которая расположена ближе, темнее. В первой комнате на полу лежит ковёр, посередине стоит стол с белой скатертью, рядом стоит стул. На стене висят часы и календарь. в другой комнате на подоконнике стоят горшки с цветами, на стене висит календарь.
Лучше сформулировать не "с вероятностью 0,99", а "с вероятностью не менее 0,99".
Все-таки считается, что случайная величина Х - отклонение размера детали от номинала - распределена нормально с указанными параметрами. Тогда можно найти вероятность того, что наугад взятая деталь окажется стандартной: P(|X-0|<4)=2Ф(4/8)=2Ф(1/2)=0.383 (из таблицы функции Лапласа).
Пришли к такой стандартной задаче: Событие А (деталь стандартна) имеет вероятность 0.383. Сколько необходимо провести испытаний, чтобы с вероятностью не менее 0.99 это событие появилось хотя бы один раз. Это можно вычислить либо по формуле Бернулли, либо по формуле вероятности появления хотя бы одного из независимых событий. Если это число раз обозначить n, то для этого n получим неравенство: 1-(1-0.383)^n > 0.99 или 0.617^n < 0.01
1. Розкриємо тангенс суми кутів для правої та лівої частини рівняння
2. Скористаємося формулою тангенсу суми кутів для зведення сум кутів у правій частині до однакового вигляду:
3. Віднімемо від обох частин рівняння tg(3x), щоб звести його до вигляду tg(7x) = tg(2x)
4. Розв'яжемо рівняння tg(7x) = tg(2x) для знаходження значень x
Отже, загальний розв'язок рівняння tg(x) + tg(4x) = tg(2x) + tg(3x) має вигляд x = kπ/5, де k - ціле число.
Пошаговое объяснение:
На фото, у відповіді просто пояснення кроків розв'язку цього рівняння.
Будь ласка, відміть цю відповідь як найкращю