М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Stepka112
Stepka112
17.07.2021 09:06 •  Математика

Какие слова можно составить из слова велорикша

👇
Ответ:
MariyaPak2701
MariyaPak2701
17.07.2021
Велик, лор, ров, лев, река, елка, шарик, ОКА, Ира, а если иожео повторять, то тогда и шишка:)))
4,7(8 оценок)
Ответ:
denasty
denasty
17.07.2021
Воришка
вершки
вершок
калоши
клавир
клавиш
кливер
оливка
акрил
валик
валки
валок
валёк
векша
велик
вешка
вилка
вилок
виола
вокал
вошка
враки
кивер
клише
ковар
ковёр
колер
кореш
креол
ларёк
левак
левша
лерка
лешак
ливер
ликёр
лошак
олива
решка
рикша
ролик
шарик
шевро
шквал
школа
вали
вари
ваше
веки
веко
вера
вика
вира
волк
евро
икра
ишак
кали
каре
кила
кило
клир
клёв
клёш
ковш
кола
кора
кров
лавр
лари
лира
овал
орёл
раёк
реал
река
риал
шале
шерл
шило
шкив
шлак
шора
шёлк
ёлка
аир
акр
вал
вар
век
вол
вор
ива
кал
кар
кол
кош
лак
лев
леи
лик
лов
рак
ров
рок
рёв
шар
шик
шов
шок
ёрш
аи
ар
ер
ил
ли
ор
ре
ро
4,6(12 оценок)
Открыть все ответы
Ответ:
Ayvili
Ayvili
17.07.2021

Лінійна функція зростає при {\displaystyle k>0}{\displaystyle k>0} та спадає при {\displaystyle k<0}{\displaystyle k<0}. Графіком лінійної функції є пряма лінія, що проходить через точку {\displaystyle M(0,b)}{\displaystyle M(0,b)} паралельно графіку функції {\displaystyle y=kx}{\displaystyle y=kx}. Якщо {\displaystyle k=0}{\displaystyle k=0}, графік лінійної функції є пряма, паралельна осі абсцис, що проходить через точку {\displaystyle b}{\displaystyle b} на осі ординат.[1]

Функція виду {\displaystyle y=kx}{\displaystyle y=kx} проходить через початок координат, і утворює з віссю абсцис кут, тангенс якого дорівнює коефіцієнту пропорційності {\displaystyle k}k.[2]

Пошаговое объяснение:

4,7(24 оценок)
Ответ:
igfubvl367
igfubvl367
17.07.2021

Исследуем функцию и построим график f(x)=x4−5x2+4.

Общую схему исследования функции можно посмотреть здесь

1. Находим область определения x∈(−∞;+∞).

2. Находим область значения f(x)∈(−∞;+∞).

3. Определяем четность функции

f(−x)=(−x)4−5(−x)2+4=x4−5x2+4=f(x)

функция четная, т.е. она симметричная относительно оси Oy. Далле будем исследовать на области x∈[0;+∞) и воспользуемся симметрией.

4. Находим точки пересечения с осью Ox, т.е. y=0

x4−5x2+4=0=>x21,2=5±25−16−−−−−−√2=5±32=>

[ x2=4x2=1=>⎡⎣⎢⎢ x1=2x2=−2x3=1x3=−1

Координаты точек (1;0),(2;0) и симметричные (−1;0),(−2;0)

5. Находим точки пересечения с осью Oy, т.е. x =0

f(0)=x4−5x2+4=04−5∗02+4=4

Координаты точки (0;4)

6. Находим интервалы возрастания и убывания функции.

Найдем первую производную

f′(x)=(x4−5x2+4)′=4x3−10x

Приравняем производную к нулю и найдем критические точки (или стационарные точки)

4x3−10x=0=>x(4x2−10)=0=>⎡⎣⎢⎢⎢⎢⎢⎢ x=0x=52−−√≈1.58x=−52−−√≈−1.58

Т.к. функция четная рассмотрим интервалы монотонности x∈(0;52−−√)∪(52−−√;+∞). Для определения монотонности найдем значение производной в любой точке интервала

интервал (0;52−−√) f′(1)=4x3−10x=4∗13−10∗1=−6<0 - функция убывает

интервал (52−−√;+∞) f′(10)=4∗103−10∗10=4000−100> 0 - функция возрастает.

7. Классифицируем критические точки (экстремумы или точками перегиба).

Изучаем изменение монотонности (знака производной) при переходе через критическую точку.

точка x=0, из симметрии видно, что слева производная больше нуля f′(x)>0 возрастает, справа меньше нуля f′(x)<0 убывает, т.е. знак меняется +0− - точка локального максимума (экстремум).Точка локального максимума имеет координаты (0;4)

точка x=52−−√, слева производная меньше нуля f′(x)<0 функция убывает , справа производная больше нуля f′(x)>0 функция возрастает, т.е. знак меняется −0+ - точка локального минимума (экстремум). Находим значение функции в этой точке f(52−−√)=(52−−√)4−5(52−−√)2+4=−94. Точка локального минимума имеет координаты (52−−√;−94)

8. Выпуклость. Находим интервалы выпуклости и точки перегиба.

Для этого найдем вторую производную

f′′(x)=(4x3−10x)′=12x2−10

Приравняем вторую производную к нулю

12x2−10=0=>x=±56−−√≈±0,91

В силу симметрии рассматривать выпуклость будет на интервале x∈(0;56−−√)∪(56−−√;+∞).

найдем значение функции в этой точке f(56−−√)=(56−−√)4−5(56−−√)2+4=1936.

Находим значения второй производной на интервалах выпуклости и определяем выпуклость графика функции:

интервал (0;56−−√). f′′(0,1)=12∗0.12−10<0 график функции имеет выпуклость вверх (выпуклый).

интервал (56−−√;+∞). f′′(1)=12∗12−10>0 график функции имеет выпуклость вниз (вогнутый).

Получили, что при переходе через точку x=56−−√ вторая производная меняет знак (выпуклость), т.е это точка перегиба. Координаты точки перегиба (56−−√;1936)

9. Строим график функции в правой полуплоскости и симметрично отображаем его в левую полуплоскость и получаем следующий график

4,6(54 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ