Для того, чтобы у выражение (2a2b - 3ab2 + b) - (a2b - 2ab2 + 2b) мы применим алгоритм упрощения выражения.
Давайте традиционно мы начнем с открытия скобок. Для открытия скобок применим правила открытия скобок перед которыми стоит плюс или не стоит никакого знака и правило открытия скобок перед которыми стоит минус.
(2a2b - 3ab2 + b) - (a2b - 2ab2 + 2b) = 2a2b - 3ab2 + b - a2b + 2ab2 - 2b.
Далее приведем подобные:
2a2b - 3ab2 + b - a2b + 2ab2 - 2b = 2a2b - a2b + 2ab2 - 3ab2 + b - 2b = a2b - ab2 - b.
Выясним, составляют ли площади квадратов бесконечно убывающую геометрическую прогрессию.
Если сторона наибольшего квадрата равна 56 см, то сторона вписанного в него квадрата равна 282√ см, следующая 28 см, ...
Если сторона квадрата равна a, то его диагональ равна a2√.
Сторона вписанного квадрата равна половине диагонали...
Площадь квадрата равна a2.
Площади квадратов образуют последовательность: 562; (28⋅2√)2; 282;...
или 3136; 1568; 784; ...
Проверим, является ли эта последовательность бесконечно убывающей геометрической прогрессией.
b2b1=15683136=0,5b3b2=7841568=0,50,5<1,q=0,5
Используем формулу суммы бесконечно убывающей геометрической прогрессии: S∞=b11−q=31361−0,5=31360,5=6272 см2
Сумма площадей всех квадратов равна 6272 см2
Пошаговое объяснение:
Пример : числа 2, 4, 5
т.е. минимальное для подбора 5
5 на 4 без остатка не делится (а также 6, 7) 8 делится без остатка на 4, но не делится на 5( продолжаем 9,10,11,12,13,14,15,16,17,18,19) 20 это наименьшее общее кратное для этих чисел, т.к. 20/5=4(без остатка, число целое) 20/4=5, 20/2=10
НОД аналогично НОК только подбор идёт в обратную сторону
Пример: для чисел 70 и 105 наибольший общий делитель равен 35.